Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

PDF

Theses/Dissertations

2017

Institution
Keyword
Publication

Articles 1 - 30 of 37

Full-Text Articles in Engineering

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr. Dec 2017

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr.

University of New Orleans Theses and Dissertations

In this work, we design a linear, two step implicit finite difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. Three separate models are analyzed, all of which can be described as systems of partial differential equations (PDE)s with nonlinear diffusion and reaction, where the biological colony grows and decays based on the substrate bioavailability. The systems under investigation are all complex models describing the dynamics of biological films. In view of the difficulties to calculate analytical solutions of the models, we design here a numerical technique …


Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee Dec 2017

Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The world’s increasing population requires an increase in transportation fuel production. The lack of production of transportation fuels due to the shortage of fossil fuel resources combined with concerns about global emissions of carbon dioxide from fossil fuel combustion are the two major issues that have driven researchers to actively pursue alternative sources for oil production. Biomass is being considered as an alternative feedstock to produce fuel and chemicals due to its abundance and renewability. It has many features that make it suitable as a source of transportation fuel production. However, the bio-oil produced by the fast pyrolysis process has …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Hydrodeoxygenation Of Anisole In A Novel Externally Agitated Reactor, Brett Pomeroy Dec 2017

Hydrodeoxygenation Of Anisole In A Novel Externally Agitated Reactor, Brett Pomeroy

Electronic Thesis and Dissertation Repository

Bio-oil upgrading via hydrodeoxygenation (HDO) was investigated using anisole, a model compound, in a novel Externally Agitated (EA) reactor which is expected to enhance gas-liquid-solid mixing. Operating conditions were established based on anisole HDO with 10 wt.% Ni on silica, γ-alumina, and δ-alumina while varying temperatures between 160 to 280oC, and reaction times between 30 – 90 minutes. Mild temperatures of 220oC and 45 minutes for reaction time with γ-alumina were selected for subsequent work since γ-alumina demonstrated the highest HDO activity. HDO was then investigated with varying Ni-Cu and Ni loadings. Despite the improved reducibility …


Electrochemical Hydrogen Separation Via The Solid Acid Electrolyte Cesium Dihydrogen Phosphate, David Leon Wilson Dec 2017

Electrochemical Hydrogen Separation Via The Solid Acid Electrolyte Cesium Dihydrogen Phosphate, David Leon Wilson

Doctoral Dissertations

Abundant, inexpensive, high purity molecular hydrogen as a medium for energy distribution is potentially enabling for adoption of alternative electricity generation schemes. Steam reforming of natural gas remains the dominant method of producing large amounts of hydrogen. However, this process also creates by-products, most notably, carbon monoxide and carbon dioxide. Separation to ultra-high purity hydrogen from these syngas reformate streams by traditional methods, such as pressure swing absorption, has its disadvantages including long cycle times, contamination and a large equipment footprint. Alternative methods of hydrogen separation, such as electrochemical pumping, are a viable alternative to this separation dilemma due to …


An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane Dec 2017

An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane

Doctoral Dissertations

Polymer electrolyte membrane fuel cells(PEMFCs) are energy conversion devices with significant potential. The factors preventing them from becoming widespread concern production and distribution of hydrogen. Developing an efficient hydrogen infrastructure with an approachable rollout plan is an essential step towards the future of fuel cells. Water electrolysis is limited by the thermodynamics of the process, which leads to high electrical consumption and significant materials challenges. Alternative methods for cleanly generating hydrogen while using a lower cell voltage are required. PEM based electrolyzers can operate with a "depolarized anode", whereby they become significantly less power hungry.

This thesis explores two techniques …


Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo Dec 2017

Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo

Doctoral Dissertations

Fuel cells development required stable, active and more abundant catalytic materials. Oxygen reduction reaction (ORR) is the key process to enhance better activity and reduce the fabrication costs. Pt-based has proven to be the best catalyst for ORR and greater efforts has been made in terms of reducing the Pt content in the electrodes, reduce electrode thickness and enhance better catalytic activities. To overcome many of the challenges present, the catalyst layer studies are the great importance in the fuel cell community. Understanding catalyst layer with new catalytic materials, and configurations requires the development of methodological approach to relate structure, …


Hydrothermal Decarboxylation Of Fatty Acids And Their Derivatives For Liquid Transportation Fuels, Md Zakir Hossain Nov 2017

Hydrothermal Decarboxylation Of Fatty Acids And Their Derivatives For Liquid Transportation Fuels, Md Zakir Hossain

Electronic Thesis and Dissertation Repository

Due to the depletion of fossil fuel reserves, renewable resources are required to produce tomorrow’s fuel range hydrocarbons. This thesis focuses on the hydrothermal decarboxylation of fatty acids and their derivatives derived from renewable sources. These are required for liquid transportation fuels which have similar properties to conventional fuels. Detailed catalytic studies were performed for the decarboxylation of oleic acid as a model compound and corn distiller’s oil (CDO) as a real feedstock. Commercial activated carbon and laboratory prepared Ni-Al2O3, MgO-Al2O3, Mo-Al2O3 catalysts were also examined as catalysts. Fatty …


Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti Nov 2017

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Nov 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee Aug 2017

Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee

Electronic Theses and Dissertations

Due to the environmental considerations, depletion of fossil fuel reserves and fluctuating non-renewable fuel price, converting non-edible lignocellulosic biomass into renewable energy resources has gained significant importance. Phenol has been chosen as a model compound for catalytic screening because it is abundant in bio-oil composition and shows a high resistance to oxygen removal during hydrodeoxygenation (HDO) reactions. HDO of phenol produces chemicals that can be used as transportation fuels (Aromatics) or fuel additives. Theoretically, HDO of phenol has two distinct reduction pathways: direct deoxygenation (DDO) and hydrogenation (HYD). The previous results published by our group showed a precedent activity and …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen Aug 2017

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


Hydrodynamics In The Gas-Driven Inverse Liquid-Solid Fluidized Bed, Jiaqi Huang Aug 2017

Hydrodynamics In The Gas-Driven Inverse Liquid-Solid Fluidized Bed, Jiaqi Huang

Electronic Thesis and Dissertation Repository

A novel reactor named Gas-Driven Inverse Liquid-Solid Fluidized Bed (GDFB for short) was developed in this research. A vertical baffle divides the column into a riser and a downer. Inverse fluidization is driven by the gas and occurs in the downer, where hydrodynamics and their influencing factors were studied. In the solid-baffle system, four fluidization regimes were observed, including the packed bed, semi-fluidized bed, fully-fluidized bed, and circulating bed. Bed expansion ratio was higher for particles with a higher density and a smaller solids loading. Moreover, the average particle velocity was proportional to superficial gas velocity and higher for denser …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash Jul 2017

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion size greatly …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho Jul 2017

Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho

Doctoral Dissertations

Growing environmental concerns associated with diminishing reserves of fossil fuels has led to accelerated research efforts towards the discovery of new catalytic processes for converting renewable lignocellulosic biomass into value-added chemicals. For this conversion, nanoporous solid acid materials have been widely used because of their excellent hydrothermal stability and molecular sieving capability. In the thesis, hierarchical Lewis acid zeolites with ordered mesoporosity and MFI topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were successfully synthesized within the confined space of three dimensionally ordered mesoporous (3DOm) carbon by a seeded growth method. The obtained 3DOm-i Sn-MFI showed at least 3 times …


Catalytic Hydrodeoxygenation And Dehydration Of Bioderived Oxygenates To Renewable Hydrocarbon Building Block Molecules: Enabling Renewable Carbon Fiber, Andrew Walter Lepore May 2017

Catalytic Hydrodeoxygenation And Dehydration Of Bioderived Oxygenates To Renewable Hydrocarbon Building Block Molecules: Enabling Renewable Carbon Fiber, Andrew Walter Lepore

Doctoral Dissertations

It is our goal to develop inexpensive catalytic pathways that can effectively remove oxygen from bio-derived carboxylic acids and alcohols under mild reaction conditions to produce propene which can be converted to renewable carbon fibers. Carboxylic acid hydrodeoxygenation and alcohol dehydration are necessary for successfully producing propene from bio-mass derived precursors and are also broadly relevant to bio-oil upgrading. This body of research adds to the understanding of both known and novel catalyst materials and develops and optimizes pathways for valorizing oxygenates. Dehydration and hydrodeoxygenation catalysts were examined under both batch and continuous flow operation. Product selectivity and reactant conversion …


Sec-Butanol From Crude Butene Feedstock Plant Design, Samantha How, Jacob Przywara, Bryce Robbins, Gavino Valdez May 2017

Sec-Butanol From Crude Butene Feedstock Plant Design, Samantha How, Jacob Przywara, Bryce Robbins, Gavino Valdez

Senior Theses

Sec-butanol, C4H10O, is a flammable alcohol that is widely used as a fuel additive or as a reactant to make butanone, an industrial solvent. A hydration reaction between n-butenes and water, catalyzed by sulfuric acid, is a commonly used process in producing sec-butanol. However, a more challenging reaction and separation scheme is presented with a crude feedstock of butenes because of the abundance of azeotropes produced by side reactions. The development of a new plant design is relevant to industrial chemical plants that produce large amounts of crude butene side products, and can be useful by increasing plant efficiency and …


Design Of 3d Macroporous Inverse Opal Tio2 Binary And Ternary Composites Sensitized With Gold Nanoparticles And Cds Quantum Dots For Photocatalysis, Daniel A. Corella Apr 2017

Design Of 3d Macroporous Inverse Opal Tio2 Binary And Ternary Composites Sensitized With Gold Nanoparticles And Cds Quantum Dots For Photocatalysis, Daniel A. Corella

Master of Science in Chemical Sciences Theses

Materials composed of titanium (IV) oxide (TiO2) have received enormous scientific interest due to titania’s abundance, non-toxicity, and photocatalytic proficiency, however its large band gap limits its applicability under ambient conditions. Various attempts have been made to incorporate titania into composite systems to sensitize it for activity under a broader range of wavelengths. One such method includes utilizing narrow band gap semiconductors to form an electron transfer process analogous to photosynthesis referred to as a Z-scheme. Z-scheme systems can catalyze the decomposition of aqueous pollutants via generation of reactive oxygen species after input of sunlight. This work reports …


Photoactive Properties Of Nanostructured Titania Modified Polyurethanes, Chao Chen Apr 2017

Photoactive Properties Of Nanostructured Titania Modified Polyurethanes, Chao Chen

Electronic Thesis and Dissertation Repository

In order to enhance both the photoactivity and physical/mechanical properties of titania/polyurethane (PU) nanocomposites, in-situ polymerization and film casting were investigated. Both self-degrading PU foams and self-cleaning PU coatings were prepared. Functional monomers were prepared usingDMPA (2,2-dimethylolpropionic acid) functionalized anatse TiO2 and P25 for integration into polyurethane foam with a "grafting-from" synthetic method. This technique was found to successfully reduce the agglomeration effect of titania nanoparticles inside the foams. In addition, the photodegradation rate was enhanced by > 120% over unmodified foam at an optimized loading of 3wt% DMPA functionalized anatase TiO2. The presence of DMPA functionalized P25 …


Activity Of Pgm-Free Electrocatalysts For Oxygen Reduction Reaction: Ph And Co-Catalysis Effects, Mario Santiago Rojas Carbonell 8148369 Apr 2017

Activity Of Pgm-Free Electrocatalysts For Oxygen Reduction Reaction: Ph And Co-Catalysis Effects, Mario Santiago Rojas Carbonell 8148369

Chemical and Biological Engineering ETDs

Fuel cells offer a source to the current and always increasing demand for electric power. But as any new technology, there are challenges that need to be addressed to render it feasible for the market place. One of this challenges is finding the appropriate materials to catalyze the oxygen reduction reaction (ORR) that occurs in the cathode. Oxygen is used as an oxidant in a significant portion of the fuel cells due to its readily availability and high reduction potential. Now, one the bottlenecks that stops the large-scale adoption is the expensive and rare metals that have been used as …


Multi-Objective Optimization Of Industrial Ammonia Synthesis, Stanislav Ivanov Apr 2017

Multi-Objective Optimization Of Industrial Ammonia Synthesis, Stanislav Ivanov

Electronic Thesis and Dissertation Repository

The thesis describes modelling and optimization work of an industrial ammonia synthesis. Author developed first-principle mathematical model of the commercial converter based on gas-solid reaction and heat transfer within the system. The model is validated with industrial data and showed satisfactory accuracy. Further, optimization study is performed in multi-objective manner to intensify ammonia production and decrease heat duty of the process. Result have revealed a potential to improve current operating condition int terms of both objectives.


Supercritical Fluid Extraction Of Valuable Chemicals: Application Of Microalgae And Pyrolysis Oil As Feedstocks, Osariemen Ogbeide Apr 2017

Supercritical Fluid Extraction Of Valuable Chemicals: Application Of Microalgae And Pyrolysis Oil As Feedstocks, Osariemen Ogbeide

Electronic Thesis and Dissertation Repository

In this dissertation, pure and modified carbon dioxide were used as non-conventional solvents for the investigation of lutein, chlorophyll a, chlorophyll b extraction from microalgae and for caffeine extraction from the pyrolysis oil of spent coffee grounds. The use of toxic organic solvents in supercritical fluid extraction has propelled research efforts to develop new solvents that are environmentally friendly and provide faster extraction compared to conventional extraction processes. For this reason, phosphatidylethanolamine (PE), a major phospholipid consisting of 14% of the entire soybean lecithin was acetylated with acetic anhydride, providing a surfactant (N-A-PE).

Then, the synthesized N-A-PE was employed as …


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has …


A New Thin Layered Structural Coating On A Metal Substrate For Enhanced Hydrogen Production From Steam Methane Reforming, Michael A. Lugo-Pimentel Jan 2017

A New Thin Layered Structural Coating On A Metal Substrate For Enhanced Hydrogen Production From Steam Methane Reforming, Michael A. Lugo-Pimentel

Dissertations and Theses

In the past decade the use of hydrogen has become more ubiquitous. Its applications range from the upgrading of fossil fuels, to the production of ammonia, to the hydrogenation of fats, to the production of muriatic acid and methanol, all without including the efforts being taken to move towards a hydrogen economy. Its widespread use and its increasing demand lays pressure to find more efficient techniques of hydrogen production. Because the overwhelming majority of hydrogen produced nowadays comes from the steam reforming of natural gas (SMR), it appears that the most adept way to improve yields is by improving the …


Synthesis Of Copper Oxide Nanoparticles In Droplet Flow Reactors, Christopher Reilly Jan 2017

Synthesis Of Copper Oxide Nanoparticles In Droplet Flow Reactors, Christopher Reilly

Honors Theses and Capstones

Synthesis of metal oxide nanoparticles within droplet flow reactors is advantageous over batch synthesis due to the elimination of concentration and temperature gradients inside the reactor and prevention of reactor fouling. We present results on the synthesis of copper oxide nanoparticles using aqueous droplets of copper acetate and acetic acid inside a bulk stream of sodium hydroxide in 1-octanol. Varying the copper acetate, acetic acid, and sodium hydroxide concentration resulted in needle-like and plate-like nanoparticles of varying sizes. The rate of mass transfer from the bulk to the droplet phase was found to increase with flow rate and addition of …


Photocatalytic Decomposition Of Phenol Under Visible And Uv Light Utilizing Titanium Dioxide Based Catalysts, Marjorie G. Steiner Jan 2017

Photocatalytic Decomposition Of Phenol Under Visible And Uv Light Utilizing Titanium Dioxide Based Catalysts, Marjorie G. Steiner

Honors Theses and Capstones

Pollution in wastewater effluvia from phenol and phenolic compounds is a common occurrence in many industrial manufacturing plants. Phenol is toxic to human beings as well as a contaminant to the environment, meanwhile, it is difficult to remove from wastewater due to its non-biodegradable nature. To boost the rate of decomposition, various catalytic approaches have been developed. With the interest of decreasing operation cost, titanium dioxide (TiO2) based catalysts have emerged as good candidates for the photocatalytic process.

In this honors project, a series of TiO2 based catalysts, including TiO2, N-TiO2, Cu-TiO2 …


Synthesis And Energy Applications Of Mesoporous Titania Thin Films, Syed Z. Islam Jan 2017

Synthesis And Energy Applications Of Mesoporous Titania Thin Films, Syed Z. Islam

Theses and Dissertations--Chemical and Materials Engineering

The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization.

For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been …