Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Kinetics Of Glycerol Conversion To Hydrocarbon Fuels Over Pd/H-Zsm-5 Catalyst, Yang Xiao, Arvind Varma Aug 2017

Kinetics Of Glycerol Conversion To Hydrocarbon Fuels Over Pd/H-Zsm-5 Catalyst, Yang Xiao, Arvind Varma

Yang Xiao

The utilization of glycerol, primary byproduct of biodiesel production, is important to enhance process economics. In our recent prior work, it was shown that glycerol can be converted to hydrocarbon fuels over bifunctional catalysts, containing a noble metal supported on H-ZSM-5. Over Pd/H-ZSM-5 catalyst, an optimal ∼60% yield of hydrocarbon fuels was obtained. In the present work, based on experimental data over Pd/H-ZSM-5 catalyst, a lumped reaction network and kinetic model are developed. Using differential kinetic experiments over the temperature range 300–450°C, the rate constants, reaction orders, and activation energies are obtained for each reaction step. The predicted values match …


Mo@ Pt Overlayers As Efficient Catalysts For Hydrodeoxygenation Of Guaiacol And Anisole, Qinghua Lai Jun 2017

Mo@ Pt Overlayers As Efficient Catalysts For Hydrodeoxygenation Of Guaiacol And Anisole, Qinghua Lai

Qinghua Lai

Silica alumina supported Mo@Pt overlayer catalysts were prepared via the directed deposition technique and evaluated for hydrodeoxygenation (HDO) of guaiacol and anisole. As predicted computationally, Mo@Pt overlayers showed reduced heats of hydrogen and carbon monoxide adsorption via chemisorption. The decreased activity of Mo@Pt overlayer catalysts for the ethylene hydrogenation descriptor reaction also suggested decreased hydrogen adsorption strength compared to a Pt only catalyst. H2-TPR results demonstrated the close interaction between Pt and Mo species for Mo@Pt overlayer catalysts and the enhanced reducibility of the molybdenum oxides via deposition of Pt to Mo. Mo@Pt overlayer catalysts showed significantly improved guaiacol and …


Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner Mar 2017

Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner

Sarwan S. Sandhu

The developed thermodynamic functions for the determination of Gibbs free energy, enthalpy, and entropy of formation of solid lithium-iron phthalocyanine (LixFePc) from solid lithium and iron phthalocyanine as a function of x, defined as g-moles of the intercalated lithium per g-mole of iron phthalocyanine, at a fixed set of temperature and pressure conditions are presented. In addition, a proposed expression for the evaluation of lithium diffusion coefficient in solid iron phthalocyanine as a function of both x and temperature, and the experimental results from the ongoing research/development work on the lithium/iron phthalocyanine cells are included.


C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski Jan 2017

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski

Wojciech Budzianowski

-


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski Jan 2017

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.