Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering

University of Kentucky

Climate change

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Detecting Recent Crop Phenology Dynamics In Corn And Soybean Cropping Systems Of Kentucky, Yanjun Yang, Bo Tao, Liang Liang, Yawen Huang, Christopher J. Matocha, Chad D. Lee, Michael Sama, Bassil El Masri, Wei Ren Apr 2021

Detecting Recent Crop Phenology Dynamics In Corn And Soybean Cropping Systems Of Kentucky, Yanjun Yang, Bo Tao, Liang Liang, Yawen Huang, Christopher J. Matocha, Chad D. Lee, Michael Sama, Bassil El Masri, Wei Ren

Geography Faculty Publications

Accurate phenological information is essential for monitoring crop development, predicting crop yield, and enhancing resilience to cope with climate change. This study employed a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with ground observations and performed trend analyses of crop phenological stages over the study period to analyze their relationships with climate change and crop yields. Our results showed that corn and soybean planting dates were delayed by 0.01 …


Contemporary And Future Characteristics Of Precipitation Indices In The Kentucky River Basin, Somsubhra Chattopadhyay, Dwayne R. Edwards, Yao Yu Feb 2017

Contemporary And Future Characteristics Of Precipitation Indices In The Kentucky River Basin, Somsubhra Chattopadhyay, Dwayne R. Edwards, Yao Yu

Biosystems and Agricultural Engineering Faculty Publications

Climatic variability can lead to large-scale alterations in the hydrologic cycle, some of which can be characterized in terms of indices involving precipitation depth, duration and frequency. This study evaluated the spatiotemporal behavior of precipitation indices over the Kentucky River watershed for both the baseline period of 1986–2015 and late-century time frame of 2070–2099. Historical precipitation data were collected from 16 weather stations in the watershed, while future rainfall time-series were obtained from an ensemble of 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation models under two future emission pathways: Representative Concentration Pathways (RCP) 4.5 and 8.5. Annual …