Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Engineering Synthetic Feedback To Promote Recovery Of Self-Feeding Skills In People With Sensory Deficits Due To Stroke, Alexis Krueger Oct 2016

Engineering Synthetic Feedback To Promote Recovery Of Self-Feeding Skills In People With Sensory Deficits Due To Stroke, Alexis Krueger

Master's Theses (2009 -)

Kinesthesia refers to sensations of limb position and movement, and deficits of upper limb kinesthetic feedback are common after stroke, impairing stroke survivors’ ability to perform the fundamental reaching and stabilization behaviors needed for daily functions like self-feeding. I attempt to mitigate the negative impact of post-stroke kinesthesia deficits by evaluating the utility of vibrotactile sensory substitution to restore closed-loop kinesthetic feedback of the upper limb. As a first step, this study evaluated performance in healthy individuals during fundamental reaching, stabilization, and tracking behaviors while using supplemental vibrotactile feedback encoding either limb state information or goal-aware error information. First, I …


Characterization Of Histological Changes In The Microvasculature Of Rat Skeletal Muscle After Spinal Cord Injury, Sally Lin Oct 2016

Characterization Of Histological Changes In The Microvasculature Of Rat Skeletal Muscle After Spinal Cord Injury, Sally Lin

Master's Theses (2009 -)

The purpose of this study was to determine whether there are histological changes in the microvasculature of rat skeletal muscle following chronic spinal cord injury both above and below the level of injury. This study is important because microvascular structure likely impacts muscle performance and cardiovascular health. To the best of our knowledge, this is the only study to investigate microvascular structure within rat skeletal muscle after spinal cord injury. We hypothesized structural remodeling would occur in both the myofibers and microvasculature, which would then manifest in differences in myofiber cross sectional area and microvascular diameter, wall thickness, wall to …


Evaluation Of An Actuated Wrist Orthosis For Use In Assistive Upper Extremity Rehabilitation, Devon Holley Oct 2016

Evaluation Of An Actuated Wrist Orthosis For Use In Assistive Upper Extremity Rehabilitation, Devon Holley

Master's Theses (2009 -)

Cerebral palsy (CP) is a neurological condition caused by damage to motor control centers of the brain. This leads to physical and cognitive deficiencies that can reduce an individual’s quality of life. Specifically, motor deficiencies of the upper extremity can make it difficult for an individual to complete everyday tasks, including eating, drinking, getting dressed, or combing their hair. Physical therapy, involving repetitive tasks, has been shown to be effective in training normal motion of the limb by invoking the neuroplasticity of the brain and its ability to adapt in order to facilitate motor learning. Creating a device for use …


Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee Oct 2016

Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee

Dissertations (1934 -)

The role of sensory systems in the cortical control of dynamic balance was examined using electroencephalography (EEG) recordings during balance perturbations while walking. Specifically, we examined the impact of sensory deficits on cortical oscillations using vibratory stimuli to suppress sensory feedback and by comparing cortical oscillations during balance perturbations while walking in people with sensory deficits associated with cervical myelopathy and neurologically intact controls. Balance during walking provides a rich framework for investigating cortical control using EEG during a functionally relevant task. While this approach is promising, substantial technical challenges remain in recording and processing EEG in the noisy, artifact …


A Fourier Description Of Covariance, And Separation Of Simultaneously Encoded Slices With In-Plane Acceleration In Fmri, Mary C. Kociuba Oct 2016

A Fourier Description Of Covariance, And Separation Of Simultaneously Encoded Slices With In-Plane Acceleration In Fmri, Mary C. Kociuba

Dissertations (1934 -)

Functional magnetic resonance imaging (fMRI) studies aim to identify localized neural regions associated with a cognitive task performed by the subject. An indirect measure of the brain activity is the blood oxygenation level dependent (BOLD) signal fluctuations observed within the complex-valued spatial frequencies measured over time. The standard practice in fMRI is to discard the phase information after image reconstruction, even with evidence of biological task-related change in the phase time-series. In the first aim of this dissertation, a complex-valued time-series covariance is derived as a linear combination of second order temporal Fourier frequency coefficients. As opposed to magnitude-only analysis, …


Functional Comparison Of Conventional Afos With The Dynamic Response Afo, Mitchell Ruble Jul 2016

Functional Comparison Of Conventional Afos With The Dynamic Response Afo, Mitchell Ruble

Master's Theses (2009 -)

Ankle foot orthoses (AFOs) are commonly prescribed to provide stability and foot clearance for patients with weakened or injured musculature. The Dynamic Response AFO (DRAFO) was designed to improve proprioception at heel strike. The design includes a rigid outer shell with a cut out heel and a soft inner lining; it is typically aligned in plantarflexion and may incorporate external heel wedges. The objective of this study was to investigate the effects of the DRAFO design features and contrast its biomechanical function with that of conventional locked and articulating AFOs. The research hypotheses were: 1) DRAFO-assisted gait parameters (e.g. ankle …


A Principal Component Analysis Investigation Of Drop Landings For Defining Anterior Cruciate Ligament Injury Risk Factors, Emily Schaefer Apr 2016

A Principal Component Analysis Investigation Of Drop Landings For Defining Anterior Cruciate Ligament Injury Risk Factors, Emily Schaefer

Master's Theses (2009 -)

Injury to the anterior cruciate ligament (ACL) has been widely investigated through observational video analysis and laboratory based cadaveric, motion capture and computer simulation models. With the greater incidence of injury in the female population, recent emphasis has been placed on understanding ACL injury mechanisms in females. By using our understanding of injury mechanisms and prospective studies, injury prediction methods can be created. Once injury can be reliably predicted, training methods can be implemented to reduce likelihood of injury and avoid devastating consequences. There is a need for a reliable way to reduce motion capture data obtained in a laboratory …


Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky Apr 2016

Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky

Dissertations (1934 -)

In this dissertation research project, we demonstrated the relationship between the structural and functional connections across the brain in stroke survivors. We used this information to predict arm function in stroke survivors, suggesting that the tools developed through this research will be useful for prescribing individualized rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating sensorimotor function after stroke are not based on the locus of injury in the brain. Instead, therapies are generalized, treating symptoms such as weakness and spasticity. This results in outcomes that are highly variable, with severity of impairment immediately following stroke as the …


Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz Apr 2016

Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz

Dissertations (1934 -)

Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility and decreased bone mass, which leads to high rates of bone fracture. OI has a prevalence of 1/5,000 to 1/10,000 in the United States. About 90% of persons with OI have a genetic mutation in the coding for collagen type I, which is the major protein of connective tissues, including bone. While its prevalence classifies it as a rare disease, it is the most common disorder of bone etiology. Until recently, little was known about the mechanics and materials of OI bone or their impact on fracture risk. …