Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Tin-Silver As A Novel Biodegradable Metallic Biomaterial, Charley Goodwin May 2024

Tin-Silver As A Novel Biodegradable Metallic Biomaterial, Charley Goodwin

All Dissertations

The Essure device is a non-hormonal, minimally-invasive, permanent female sterilization implant, removed from the market due to an increase in adverse events, hypothesized to be caused by corrosion of the Sn-Ag component of the implant. The goals of this dissertation were to first develop implant retrieval methods for Essure devices and surrounding tissue, documenting signs of degradation and metallic degradation products, then to characterize the electrochemical behavior of Sn-Ag in biologically representative environments and finally, to assess the biological interaction of Sn-Ag. Retrieval analyses developed successful methods, qualifying the degree of corrosion, primarily of the Sn-Ag component and finding Sn …


Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz Dec 2023

Ti-6al-4v Β Phase Selective Dissolution: In Vitro Mechanism And Prediction, Michael A Kurtz

All Dissertations

Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Large-Scale Analysis And Automated Detection Of Trunnion Corrosion On Hip Arthroplasty Devices, Anastasia M. Codirenzi Jun 2022

Large-Scale Analysis And Automated Detection Of Trunnion Corrosion On Hip Arthroplasty Devices, Anastasia M. Codirenzi

Electronic Thesis and Dissertation Repository

Corrosion at the modular head-neck taper interface of total and hemiarthroplasty hip implants (trunnionosis) is a cause of implant failure and thus a clinical concern. Patient and device factors contributing to the occurrence of trunnionosis have been investigated in prior implant retrieval studies. The Goldberg corrosion scoring method is considered the gold standard for observing trunnionosis, but it is labour-intensive. As a result, previous studies have generally looked at under 250 implants for analysis. The purpose of this thesis was to do a large-scale analysis of trunnionosis and explore its relationship to device and patient factors and compare to previously …


Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom Jan 2021

Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom

Dissertations, Master's Theses and Master's Reports

The development of magnesium bioresorbable implants has become increasingly popular due to the increased need for temporary implants and magnesium’s excellent biocompatibility and suitable elastic modulus. Even though magnesium is an excellent candidate, when alloyed with other metals magnesium’s corrosion rate becomes too rapid for bioresorbable medical applications. The investigation into novel processing techniques to control the formation of precipitates to improve mechanical strength and ductility as well as corrosion rates has become of interest. This work investigates the combination of two nonequilibrium processing techniques, rapid solidification (RS) and equal channel angular pressing (ECAP), and the effects it has on …


A Rubric For Electrochemical Testing Of Metallic Biomaterials, Frederick G. De La Fuente Aug 2014

A Rubric For Electrochemical Testing Of Metallic Biomaterials, Frederick G. De La Fuente

Master's Theses

Corrosion is a major factor for the failure of metallic medical implants. Testing a metal’s suseptability to corrosion prior to implantation is key to a successful implantation. Electrochemical processes were used in this study to evaluate the characteristics of corrosion of both AISI 316 stainless steel and titanium alloy Ti6Al4V, welded and non-welded. Linear, potentiodynamic, and cyclic polarization curves were produced by the PARC 2273 potentiostat showing the corrosion tendencies of the metals in four unique solutions 3.5% NaCl, 0.35% NaCl, phosphate buffered saline solution (PBS), and Butterfield phosphate buffered solution (BPS). The concentration of chloride ions in solutions affected …


Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann Jan 2014

Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann

Theses and Dissertations--Chemical and Materials Engineering

Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium.

Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy …


Density Functional Theory (Dft) Study On The Hydrolysis Behavior Of Degradable Mg/Mg Alloys For Biomedical Applications, Marjan Nezafati Aug 2013

Density Functional Theory (Dft) Study On The Hydrolysis Behavior Of Degradable Mg/Mg Alloys For Biomedical Applications, Marjan Nezafati

Theses and Dissertations

Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate …


Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner Jun 2013

Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner

Materials Engineering

To assess corrosion rates of metal alloy bio-absorbable stents an experimental set-up was designed to mimic the coronary artery environment. The artery was modeled using 4mm diameter Tecoflex tubing and the metal alloy stents were inserted into the tubing using a catheter. As is the case in cardiac surgery, the catheter with the stent and a microballoon were maneuvered to the desired position. The microballoon was then slowly inflated to expand the stent and compress it against the tubing walls. The catheter and microballoon were then withdrawn. A circulating pump system was set up to cycle fetal bovine serum (FBS) …


Evaluation Of Corrosion Properties For Use Of Az31b In Bioabsorbable Stents And In Vivo Corrosion Rate Prediction Using Fea, Jared Vidales, Austin Schader, Jenna Jerman, Michael Turovskiy Jun 2012

Evaluation Of Corrosion Properties For Use Of Az31b In Bioabsorbable Stents And In Vivo Corrosion Rate Prediction Using Fea, Jared Vidales, Austin Schader, Jenna Jerman, Michael Turovskiy

Materials Engineering

AZ31B was heat treated to evoke more controlled and uniform corrosion. 1/16” diameter AZ31B wire was cut into six samples each 1” long. The samples underwent heat treatments following ASTM B661-06. Samples were weighed and placed into three different in vitro environments. In the first scenario two samples of each heat treatment were individually placed in 50 ml of saline solution at 0.9% sodium, in a static test tube at 37°C temperature. Two samples were placed in 100 ml of 0.9% saline solution in a 250 ml stirring beaker with an average whirlpool depth of 1”. Two of each sample …


Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins Jun 2012

Corrosion Of Stainless Steel 316l And Astm F75 Cobalt Chromium Alloy During Immersion Testing In Silver Salt Solutions, Meagan Higgins

Materials Engineering

This study evaluates the potential effects of silver salts on biocompatible metals used for prostheses during the chemical reduction process to produce a silver antimicrobial layer on the metal’s surface. Samples of two biocompatible metals were obtained: Stainless Steel 316L and ASTM F75 Cobalt Chromium Alloy. Three different silver salts were also acquired: silver nitrate, silver sulfadiazine, and silver chloride. Specimens of each metal were cut to size using a 4-1/2 inch aluminum oxide, 40 grit, cut off wheel for metal, attached to a Dewalt Angle Grinder. The biocompatible metal samples were then subject to either Solution 1, water with …


The Effect Of Particle Surface Area To Volume Ratio On Ion Release From Cocr Spheres, Darin J. Grandfield Jun 2009

The Effect Of Particle Surface Area To Volume Ratio On Ion Release From Cocr Spheres, Darin J. Grandfield

Master's Theses

In 2005, over 200,000 Americans underwent a hip arthroplasty, the replacement of a hip joint with an artificial prosthesis. Of these arthroplasties, metal-on-metal type implants represent an increasing usage percentage. Metal-on-metal implants are selected largely for their low volumetric wear rate, durability, and resistance to corrosion. In spite of these advantages, little is known concerning the long-term consequences of heavy metal alloy use in the body, although early research indicates potentially carcinogenic results. This thesis is a preliminary investigation into these long term effects and their root causes.

An improved comprehension of the corrosion kinetics and the rate of ion …