Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Development Of A Two-Finger Haptic Robotic Hand With Novel Stiffness Detection And Impedance Control, Vahid Mohammadi, Ramin Shahbad, Mojtaba Hosseini, Mohammad Hossein Gholampour, Saeed Shiry Ghidary, Farshid Najafi, Ahad Behboodi Jan 2024

Development Of A Two-Finger Haptic Robotic Hand With Novel Stiffness Detection And Impedance Control, Vahid Mohammadi, Ramin Shahbad, Mojtaba Hosseini, Mohammad Hossein Gholampour, Saeed Shiry Ghidary, Farshid Najafi, Ahad Behboodi

Mechanical & Aerospace Engineering Faculty Publications

Haptic hands and grippers, designed to enable skillful object manipulation, are pivotal for high-precision interaction with environments. These technologies are particularly vital in fields such as minimally invasive surgery, where they enhance surgical accuracy and tactile feedback: in the development of advanced prosthetic limbs, offering users improved functionality and a more natural sense of touch, and within industrial automation and manufacturing, they contribute to more efficient, safe, and flexible production processes. This paper presents the development of a two-finger robotic hand that employs simple yet precise strategies to manipulate objects without damaging or dropping them. Our innovative approach fused force-sensitive …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris May 2019

Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris

Rose-Hulman Summer Undergraduate Research Fellowships

Supernumerary robotic limbs (SRLs) can be used to provide a person with extra arms to help with difficult tasks. For example, a task that normally requires three hands to complete could be accomplished by just one person with an SRL. One way to control an SRL and still leave both hands available is to use the foot. This paper describes two parts of developing this foot interface: characterizing the range of forces that the foot can apply, and prototyping systems for different control methods. First, a small sample of data was collected to learn how much force the foot can …


Agricultural Field Robotics For Plant Data Acquisition, Jeremy S. Blackford, Jared Werner, Tyler A. Troyer, Ethan Nutter May 2016

Agricultural Field Robotics For Plant Data Acquisition, Jeremy S. Blackford, Jared Werner, Tyler A. Troyer, Ethan Nutter

UCARE Research Products

As the demand for food increases, we are presented with the challenge of producing food more efficiently. With the help of agricultural robots it will be possible to achieve greater yields by the application of seeds, fertilizers and chemicals in the most efficient way possible. With more advanced robotic systems accurate crop data can be obtained to improve farming products and techniques.

Flex-Row is a medium sized agricultural robotic platform built for autonomously traversing through rough fields during multiple crop growing stages. This platform consisting of a flexible frame with the ability to vary both width and height will initially …


Robotic Resistance/Assistance Training Improves Locomotor Function In Individuals Poststroke: A Randomized Controlled Study, Ming Wu, Jill M. Landry, Janis Kim, Brian D. Schmit, Sheng-Che Yen, Jillian Macdonald May 2014

Robotic Resistance/Assistance Training Improves Locomotor Function In Individuals Poststroke: A Randomized Controlled Study, Ming Wu, Jill M. Landry, Janis Kim, Brian D. Schmit, Sheng-Che Yen, Jillian Macdonald

Biomedical Engineering Faculty Research and Publications

Objective

To determine whether providing a controlled resistance versus assistance to the paretic leg at the ankle during treadmill training will improve walking function in individuals poststroke.

Design

Repeated assessment of the same patients with parallel design and randomized controlled study between 2 groups.

Setting

Research units of rehabilitation hospitals.

Participants

Patients (N=30) with chronic stroke.

Intervention

Subjects were stratified based on self-selected walking speed and were randomly assigned to the resistance or assistance training group. For the resistance group, a controlled resistance load was applied to the paretic leg at the ankle to resist leg swing during treadmill walking. …


Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi Jul 2012

Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparo-Endoscopic Single Site (LESS) Robotics Surgery is an advanced technology in the field of Minimally Invasive Surgery (MIS). The LESS surgical robots significantly improve the surgeon’s accuracy, dexterity and visualization, and reduce the invasiveness of surgical procedure results in faster recovery time and improved cosmetic results. In a standard robotic endosurgery, the palpation of tissues is performed by laparoscopic graspers located at the end effectors. The master-slave configuration in robotic surgery leads in remote access to the operation site. Therefore, surgeon’s ability to perceive valuable sensory information is severely diminished. Sensory information such as haptics, which is essential for safe …


Robotic Resistance Treadmill Training Improves Locomotor Function In Human Spinal Cord Injury: A Pilot Study, Ming Wu, Jill M. Landry, Brian Schmit, T. George Hornby, Sheng-Che Yen May 2012

Robotic Resistance Treadmill Training Improves Locomotor Function In Human Spinal Cord Injury: A Pilot Study, Ming Wu, Jill M. Landry, Brian Schmit, T. George Hornby, Sheng-Che Yen

Biomedical Engineering Faculty Research and Publications

Objective

To determine whether cable-driven robotic resistance treadmill training can improve locomotor function in humans with incomplete spinal cord injury (SCI).

Design

Repeated assessment of the same patients with crossover design.

Setting

Research units of rehabilitation hospitals in Chicago.

Participants

Patients with chronic incomplete SCI (N=10) were recruited to participate in this study.

Interventions

Subjects were randomly assigned to 1 of 2 groups. One group received 4 weeks of assistance training followed by 4 weeks of resistance training, while the other group received 4 weeks of resistance training followed by 4 weeks of assistance training. Locomotor training was provided by …


Brige: Translating Robotic Technology For Inclusive Fitness: An Innovative Robotic Rowing Exoskeleton (Rre) Development Project, Ashish D. Deshpande Jul 2011

Brige: Translating Robotic Technology For Inclusive Fitness: An Innovative Robotic Rowing Exoskeleton (Rre) Development Project, Ashish D. Deshpande

University of Maine Office of Research Administration: Grant Reports

Intellectual Merit: The opportunities for inclusion in fitness activity for disabled individuals, particularly those with severe disabilities, are extremely limited due to intrinsic, environmental, and social factors. This BRIGE project focuses on advancing robotic technology as a strategy to promote fitness opportunities for a range of individuals with disabilities. This project will 1) design, test, and build a prototype robotic device called Robotic Rowing Exoskeleton (RRE) that will augment movement, coordination, and strength in the activity of rowing; 2) yield a complete dynamics model of rowing biomechanics and parameter determination via human subject data; 3) provide a model system through …


Linear Tactile Nanodevice With Resolution On Par With Human Finger, Ravi F. Saraf, Vivek C. Maheshwari, Chieu Nguyen Oct 2007

Linear Tactile Nanodevice With Resolution On Par With Human Finger, Ravi F. Saraf, Vivek C. Maheshwari, Chieu Nguyen

Ravi Saraf Publications

A large area thin-film nanodevice made by self-assembly containing electroluminescent nanoparticles is reported. The ~100 nm thick device on application of potential across the top and bottom surface of the film converts local pressure to light. The intensity of the electroluminescent light is linearly proportional to the applied local compressive stress. By imaging the light, the stress distribution over the area of contact is obtained at resolution on par with human finger.


Design And Validation Of A Mr-Compatible Pneumatic Manipulandum, Aaron J. Suminski, Janice L. Zimbelman, Robert A. Scheidt Jul 2007

Design And Validation Of A Mr-Compatible Pneumatic Manipulandum, Aaron J. Suminski, Janice L. Zimbelman, Robert A. Scheidt

Biomedical Engineering Faculty Research and Publications

The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot's ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI …