Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Feasibility Of Continuous Fever Monitoring Using Wearable Devices, Benjamin L. Smarr, Kirstin Aschbacher, Sarah M. Fisher, Anoushka Chowdhary, Stephan Dilchert, Karena Puldon, Adam Rao, Frederick M. Hecht, Ashley E. Mason Dec 2020

Feasibility Of Continuous Fever Monitoring Using Wearable Devices, Benjamin L. Smarr, Kirstin Aschbacher, Sarah M. Fisher, Anoushka Chowdhary, Stephan Dilchert, Karena Puldon, Adam Rao, Frederick M. Hecht, Ashley E. Mason

Publications and Research

Elevated core temperature constitutes an important biomarker for COVID-19 infection; however, no standards currently exist to monitor fever using wearable peripheral temperature sensors. Evidence that sensors could be used to develop fever monitoring capabilities would enable large-scale health-monitoring research and provide high-temporal resolution data on fever responses across heterogeneous populations. We launched the TemPredict study in March of 2020 to capture continuous physiological data, including peripheral temperature, from a commercially available wearable device during the novel coronavirus pandemic. We coupled these data with symptom reports and COVID-19 diagnosis data. Here we report findings from the first 50 subjects who reported …


Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt Dec 2020

Network-Level Mechanisms Underlying Effects Of Transcranial Direct Current Stimulation (Tdcs) On Visuomotor Learning, Pejman Sehatpour, Clément Dondé, Matthew J. Hoptman, Johanna Kreither, Devin Adair, Elisa Dias, Blair Vail, Stephanie Rohrig, Gail Silipo, Javier Lopez-Calderon, Antigona Martinez, Daniel C. Javitt

Publications and Research

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.


Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt Nov 2020

Multimodal Computational Modeling Of Visual Object Recognition Deficits But Intact Repetition Priming In Schizophrenia, Pejman Sehatpour, Anahita Bassir Nia, Devin Adair, Zhishun Wang, Heloise M. Debaun, Gail Silipo, Antigona Martinez, Daniel C. Javitt

Publications and Research

The term perceptual closure refers to the neural processes responsible for “filling-in” missing information in the visual image under highly adverse viewing conditions such as fog or camouflage. Here we used a closure task that required the participants to identify barely recognizable fragmented line-drawings of common objects. Patients with schizophrenia have been shown to perform poorly on this task. Following priming, controls and importantly patients can complete the line-drawings at greater levels of fragmentation behaviorally, suggesting an improvement in their ability to performthe task. Closure phenomena have been shown to involve a distributed network of cortical regions, notably the lateral …


Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet Nov 2020

Update On The Use Of Transcranial Electrical Brain Stimulation To Manage Acute And Chronic Covid-19 Symptoms, Giuseppina Pilloni, Marom Bikson, Bashar W. Badran, Mark S. George, Steven A. Kautz, Alexandre Hideki Okano, Abrahão Fontes Baptista, Leigh E. Charvet

Publications and Research

The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, …


The Glycocalyx And Its Role In Vascular Physiology And Vascular Related Diseases, Sheldon Weinbaum, Limary M. Cancel, Bingmei M. Fu, John M. Tarbell Sep 2020

The Glycocalyx And Its Role In Vascular Physiology And Vascular Related Diseases, Sheldon Weinbaum, Limary M. Cancel, Bingmei M. Fu, John M. Tarbell

Publications and Research

Purpose—In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper.

Methods—A literature search mainly focusing on the role of the glycocalyx in the two major areas described above …


Renal Proximal Tubular Nemo Plays A Critical Role In Ischemic Acute Kidney Injury, Sang Jun Han, Ryan M. Williams, Mihwa Kim, Daniel A. Heller, Vivette D'Agati, Marc Schmidt-Supprian, H. Thomas Lee Sep 2020

Renal Proximal Tubular Nemo Plays A Critical Role In Ischemic Acute Kidney Injury, Sang Jun Han, Ryan M. Williams, Mihwa Kim, Daniel A. Heller, Vivette D'Agati, Marc Schmidt-Supprian, H. Thomas Lee

Publications and Research

We determined that renal proximal tubular (PT) NF-κB essential modulator (NEMO) plays a direct and critical role in ischemic acute kidney injury (AKI) using mice lacking renal PT NEMO and by targeted renal PT NEMO inhibition with mesoscale nanoparticle–encapsulated NEMO binding peptide (NBP MNP). We subjected renal PT NEMO–deficient mice, WT mice, and C57BL/6 mice to sham surgery or 30 minutes of renal ischemia and reperfusion (IR). C57BL/6 mice received NBP MNP or empty MNP before renal IR injury. Mice treated with NBP MNP and mice deficient in renal PT NEMO were protected against ischemic AKI, having decreased renal tubular …


Rectus Femoris Hyperreflexia Contributes To Stiff-Knee Gait After Stroke, Tunc Akbas, Kyoungsoon Kim, Kathleen Doyle, Kathleen Manella, Robert Lee, Patrick Spicer, Maria Knikou, James Sulzer Aug 2020

Rectus Femoris Hyperreflexia Contributes To Stiff-Knee Gait After Stroke, Tunc Akbas, Kyoungsoon Kim, Kathleen Doyle, Kathleen Manella, Robert Lee, Patrick Spicer, Maria Knikou, James Sulzer

Publications and Research

Background: Stiff-Knee gait (SKG) after stroke is often accompanied by decreased knee flexion angle during the swing phase. The decreased knee flexion has been hypothesized to originate from excessive quadriceps activation.However, it is unclear whether hyperreflexia plays a role in this activation. The goal of this study was to establish the relationship between quadriceps hyperreflexia and knee flexion angle during walking in post-stroke SKG.

Methods: The rectus femoris (RF) H-reflex was recorded in 10 participants with post-stroke SKG and 10 healthy controls during standing and walking at the pre-swing phase. In order to attribute the pathological neuromodulation to quadriceps muscle …


Visually Evoked Responses Are Enhanced When Engaging In A Video Game, Jason J. Ki, Lucas C. Parra, Jacek P. Dmochowski Jul 2020

Visually Evoked Responses Are Enhanced When Engaging In A Video Game, Jason J. Ki, Lucas C. Parra, Jacek P. Dmochowski

Publications and Research

While it is well known that vision guides movement, less appreciated is that the motor cortex also provides input to the visual system. Here, we asked whether neural processing of visual stimuli is acutely modulated during motor activity, hypothesizing that visual evoked responses are enhanced when engaged in a motor task that depends on the visual stimulus. To test this, we told participants that their brain activity was controlling a video game that was in fact the playback of a prerecorded game. The deception, which was effective in half of participants, aimed to engage the motor system while avoiding evoked …


Olfaction Modulates Inter-Subject Correlation Of Neural Responses, Paul Deguzman, Anshul Jain, Matthias H. Tabert, Lucas C. Parra Jul 2020

Olfaction Modulates Inter-Subject Correlation Of Neural Responses, Paul Deguzman, Anshul Jain, Matthias H. Tabert, Lucas C. Parra

Publications and Research

Odors can be powerful stimulants. It is well-established that odors provide strong cues for recall of locations, people and events. The effects of specific scents on other cognitive functions are less well-established. We hypothesized that scents with different odor qualities will have a different effect on attention. To assess attention, we used Inter-Subject Correlation of the EEG because this metric is strongly modulated by attentional engagement with natural audiovisual stimuli.We predicted that scents known to be “energizing” would increase Inter-Subject Correlation during watching of videos as compared to “calming” scents. In a first experiment, we confirmed this for eucalyptol and …


Functional Connectivity Of Eeg Is Subject-Specific, Associated With Phenotype, And Different From Fmri, Maximilian Nentwich, Lei Ai, Jens Madsen, Qawi K. Telesford, Stefan Haufe, Michael P. Milham, Lucas C. Parra May 2020

Functional Connectivity Of Eeg Is Subject-Specific, Associated With Phenotype, And Different From Fmri, Maximilian Nentwich, Lei Ai, Jens Madsen, Qawi K. Telesford, Stefan Haufe, Michael P. Milham, Lucas C. Parra

Publications and Research

A variety of psychiatric, behavioral and cognitive phenotypes have been linked to brain ‘’functional connectivity’’ -- the pattern of correlation observed between different brain regions. Most commonly assessed using functional magnetic resonance imaging (fMRI), here, we investigate the connectivity-phenotype associations with functional connectivity measured with electroencephalography (EEG), using phase-coupling. We analyzed data from the publicly available Healthy Brain Network Biobank. This database compiles a growing sample of children and adolescents, currently encompassing 1657 individuals. Among a variety of assessment instruments we focus on ten phenotypic and additional demographic measures that capture most of the variance in this sample. The largest …


Can Transcranial Electrical Stimulation Motor Threshold Estimate Individualized Tdcs Doses Over The Prefrontal Cortex? Evidence From Reverse-Calculation Electric Field Modeling, Kevin A. Caulfield, Bashar W. Badran, Xingbao Li, Marom Bikson, Mark S. George May 2020

Can Transcranial Electrical Stimulation Motor Threshold Estimate Individualized Tdcs Doses Over The Prefrontal Cortex? Evidence From Reverse-Calculation Electric Field Modeling, Kevin A. Caulfield, Bashar W. Badran, Xingbao Li, Marom Bikson, Mark S. George

Publications and Research

No abstract provided.


Otx2 Represses Sister Cell Fate Choices In The Developing Retina To Promote Photoreceptor Specification, Miruna Georgiana Ghinia Tegla, Diego F. Buenaventura, Diana Y. Kim, Cassandra Thakurdin, Kevin C. Gonzalez, Mark M. Emerson Apr 2020

Otx2 Represses Sister Cell Fate Choices In The Developing Retina To Promote Photoreceptor Specification, Miruna Georgiana Ghinia Tegla, Diego F. Buenaventura, Diana Y. Kim, Cassandra Thakurdin, Kevin C. Gonzalez, Mark M. Emerson

Publications and Research

During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor …


Transcranial Electrical Stimulation Motor Threshold Can Estimate Individualized Tdcs Dosage From Reverse-Calculation Electric-Field Modeling, Kevin A. Caulfield, Bashar W. Badran, William H. Devries, Philipp M. Summers, Emma Kofmehl, Xingbao Li, Jeffrey J. Borckardt, Marom Bikson, Mark S. George Apr 2020

Transcranial Electrical Stimulation Motor Threshold Can Estimate Individualized Tdcs Dosage From Reverse-Calculation Electric-Field Modeling, Kevin A. Caulfield, Bashar W. Badran, William H. Devries, Philipp M. Summers, Emma Kofmehl, Xingbao Li, Jeffrey J. Borckardt, Marom Bikson, Mark S. George

Publications and Research

Background

Unique amongst brain stimulation tools, transcranial direct current stimulation (tDCS) currently lacks an easy or widely implemented method for individualizing dosage.

Objective

We developed a method of reverse-calculating electric-field (E-field) models based on Magnetic Resonance Imaging (MRI) scans that can estimate individualized tDCS dose. We also evaluated an MRI-free method of individualizing tDCS dose by measuring transcranial magnetic stimulation (TMS) motor threshold (MT) and single pulse, suprathreshold transcranial electrical stimulation (TES) MT and regressing it against E-field modeling. Key assumptions of reverse-calculation E-field modeling, including the size of region of interest (ROI) analysis and the linearity of multiple E-field …


A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez Mar 2020

A Micro-Optic Stalk (Muos) System To Model The Collective Migration Of Retinal Neuroblasts, Stephanie Zhang, Miles Markey, Caroline D. Pena, Tadmiri Venkatesh, Maribel Vasquez

Publications and Research

Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation For Oromotor Feeding Problems In Newborns: An Open-Label Pilot Study, Bashar W. Badran, Dorothea D. Jenkins, Daniel Cook, Sean Thompson, Morgan Darcy, William H. Devries, Georgia Mappin, Philipp Summers, Marom Bikson, Mark S. George Mar 2020

Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation For Oromotor Feeding Problems In Newborns: An Open-Label Pilot Study, Bashar W. Badran, Dorothea D. Jenkins, Daniel Cook, Sean Thompson, Morgan Darcy, William H. Devries, Georgia Mappin, Philipp Summers, Marom Bikson, Mark S. George

Publications and Research

Neonates born premature or who suffer brain injury at birth often have oral feeding dysfunction and do not meet oral intake requirements needed for discharge. Low oral intake volumes result in extended stays in the hospital (>2 months) and can lead to surgical implant and explant of a gastrostomy tube (G-tube). Prior work suggests pairing vagus nerve stimulation (VNS) with motor activity accelerates functional improvements after stroke, and transcutaneous auricular VNS (taVNS) has emerged as promising noninvasive form of VNS. Pairing taVNS with bottle-feeding rehabilitation may improve oromotor coordination and lead to improved oral intake volumes, ultimately avoiding the …


Theoretical Analysis Of The Leakage Through The Cement Line Of A Single Osteon, Gaffar Gailani, Stephen Cowin Mar 2020

Theoretical Analysis Of The Leakage Through The Cement Line Of A Single Osteon, Gaffar Gailani, Stephen Cowin

Publications and Research

This work focuses on the Lacunar–Canalicular Porosity (PLC) of cortical bone which includes the osteons. Osteons are semicylindrical porous structures saturated with fluid within the bone and are approximately 250" role="presentation">μ" role="presentation">μm in diameter. The outer boundary of the osteon is called the cement line. Some studies suggested that the cement line is less highly mineralized and produced evidence that it has less calcium and phosphorus and more sulfur than the neighboring bone lamellae. Most authors assume that the cement line is impermeable, while others assume that some canaliculi are crossing the cement line which will make it …


In Vitro Evaluation Of The Influence Of Substrate Mechanics On Matrix-Assisted Human Chondrocyte Transplantation, Yueh-Hsun Kevin Yang, Courtney R. Ogando, Gilda A. Barabino Jan 2020

In Vitro Evaluation Of The Influence Of Substrate Mechanics On Matrix-Assisted Human Chondrocyte Transplantation, Yueh-Hsun Kevin Yang, Courtney R. Ogando, Gilda A. Barabino

Publications and Research

Matrix-assisted chondrocyte transplantation (MACT) is of great interest for the treatment of patients with cartilage lesions. However, the roles of the matrix properties in modulating cartilage tissue integration during MACT recovery have not been fully understood. The objective of this study was to uncover the effects of substrate mechanics on the integration of implanted chondrocyte-laden hydrogels with native cartilage tissues. To this end, agarose hydrogels with Young’s moduli ranging from 0.49 kPa (0.5%, w/v) to 23.08 kPa (10%) were prepared and incorporated into an in vitro human cartilage explant model. The hydrogel-cartilage composites were cultivated for up to 12 weeks …


Enhanced Tes And Tdcs Computational Models By Meninges Emulation, Jimmy Jiang, Dennis Q. Truong, Zeinab Esmaeilpour, Yu Huang, Bashar W. Badran, Marom Bikson Jan 2020

Enhanced Tes And Tdcs Computational Models By Meninges Emulation, Jimmy Jiang, Dennis Q. Truong, Zeinab Esmaeilpour, Yu Huang, Bashar W. Badran, Marom Bikson

Publications and Research

Objective. Understanding how current reaches the brain during transcranial electrical stimulation (tES) underpins efforts to rationalize outcomes and optimize interventions. To this end, computational models of current flow relate applied dose to brain electric field. Conventional tES modeling considers distinct tissues like scalp, skull, cerebrospinal fluid (CSF), gray matter and white matter. The properties of highly conductive CSF are especially important. However, modeling the space between skull and brain as entirely CSF is not an accurate representation of anatomy. The space conventionally modeled as CSF is approximately half meninges (dura, arachnoid, and pia) with lower conductivity. However, the resolution …