Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanics and Biotransport

Theses/Dissertations

Fluid dynamics

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers Jan 2022

Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers

Electronic Theses and Dissertations

Mitral regurgitation (MR) is a prominent cardiac disease affecting more than two million people in the United States alone. In order for patients to receive proper therapy, regurgitant volume must first be quantified. As there are an array of methods to do so, the proximal isovelocity surface area (PISA) method continues to be the most accurate and clinically used method. However, there are some difficulties obtaining the necessary measurements need for this when performing transthoracic echocardiography. This study aims to evaluate and present techniques that may be used to more accurately quantify regurgitation through ex vivo testing and computational fluid …


Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini Jun 2018

Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini

Master's Theses

Subclinical atherosclerosis is an important area of research to evaluate stroke risk and predict localization of plaque. The current methods for detecting atherosclerosis risk are insufficient because it is based on The Framingham Risk Score and carotid intima media thickness, therefore an engineering detection model based on quantifiable data is needed. Laminar and turbulent flow, dictated by Reynolds number and relative roughness, was modeled through the carotid artery bifurcation to compare shear stress and shear rate. Computer-aided design and fluid flow software were used to model hemodynamics through the carotid artery. Data from the model was derived from governing equations …