Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanics and Biotransport

PDF

Series

2013

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain Nov 2013

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain

Chemical and Materials Engineering Faculty Publications

Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies; however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree …


Towards A More Robust Lower Neck Compressive Injury Tolerance - An Approach Combining Multiple Test Methodologies, Daniel Toomey, King H. Yang, N Yoganadan, F A. Pintar, C A. Van Ee Sep 2013

Towards A More Robust Lower Neck Compressive Injury Tolerance - An Approach Combining Multiple Test Methodologies, Daniel Toomey, King H. Yang, N Yoganadan, F A. Pintar, C A. Van Ee

Biomedical Engineering Faculty Research Publications

Objective.The compressive tolerance of the cervical spine has traditionally been reported in terms of axial force at failure. Previous studies suggest that axial compressive force at failure is particularly sensitive to the alignment of the cervical vertebra and the end conditions of the test methodology used. The present study was designed to develop a methodology to combine the data of previous experiments into a diverse dataset utilizing multiple test methods to allow for the evaluation of the robustness of current and proposed eccentricity based injury criteria.

Methods. Data was combined from two studies composed of dynamic experiments including whole …


Why Is Ca3 More Vulnerable Than Ca1 In Experimental Models Of Controlled Cortical Impact-Induced Brain Injury?, Haojie Mao, Benjamin S. Elkin, Vinay V. Genthikatti, Barclay Morrison Iii, King H. Yang Sep 2013

Why Is Ca3 More Vulnerable Than Ca1 In Experimental Models Of Controlled Cortical Impact-Induced Brain Injury?, Haojie Mao, Benjamin S. Elkin, Vinay V. Genthikatti, Barclay Morrison Iii, King H. Yang

Biomedical Engineering Faculty Research Publications

One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to assume that CA3 is stretched more during CCI injury. Recent mechanical studies of the brain have reported on a level of spatial heterogeneity not previously appreciated—the finding that CA1 was significantly stiffer than all other regions tested and that CA3 was one of the most …


Finite Element Models Of The Knee & Hip Joints: Using Opensim To Predict Muscle Forces, Kevin S. Jones, Spencer D. Wangerin, Jeffrey D. Pyle, Stephen M. Klisch, Scott J. Hazelwood Aug 2013

Finite Element Models Of The Knee & Hip Joints: Using Opensim To Predict Muscle Forces, Kevin S. Jones, Spencer D. Wangerin, Jeffrey D. Pyle, Stephen M. Klisch, Scott J. Hazelwood

STAR Program Research Presentations

Quantitative data of stresses and strains in the cartilage of the knee and hip joints are required to design prostheses and can be used to give accurate advice to patients with cartilage damage as to which activities should be avoided. Instrumented hip implants can only give the overall resultant force in the joint, not the stresses and strains throughout the cartilage. Finite Element (FE) models of the Knee and Hip are being constructed in order to obtain the stresses and strains in articular (of the joint) cartilage. Muscle forces and joint contact forces are required as inputs to these FE …


Design Of A Compliant Underactuated Robotic Finger With Coordinated Stiffness, Etienne Dessauw Aug 2013

Design Of A Compliant Underactuated Robotic Finger With Coordinated Stiffness, Etienne Dessauw

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The concept of underactuation has been previously developed in the robotic field for grasping applications. For these anthropomorphic grippers, the minimization of the number of input signals, or in other words underactuation, is the most expected characteristic. This method has become very popular in recent decades. Indeed, by minimizing the number of input signals, it minimizes the complexity of the system’s control and at the same time avoids increased weight and cost. The inconvenience of such a technique is that the design of this type of system remains a difficult task if the behavior of the underactuated set of joints …


Interleukin Expression After Injury And The Effects Of Interleukin-1 Receptor Antagonist, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Stacey L. Brickson, William L. Murphy, Geoffrey S. Baer, Ray Vanderby Aug 2013

Interleukin Expression After Injury And The Effects Of Interleukin-1 Receptor Antagonist, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Stacey L. Brickson, William L. Murphy, Geoffrey S. Baer, Ray Vanderby

Faculty Work Comprehensive List

Ligament healing follows a series of complex coordinated events involving various cell types, cytokines, as well as other factors, producing a mechanically inferior tissue more scar-like than native tissue. Macrophages provide an ongoing source of cytokines to modulate inflammatory cell adhesion and migration as well as fibroblast proliferation. Studying interleukins inherent to ligament healing during peak macrophage activation and angiogenesis may elucidate inflammatory mediators involved in subsequent scar formation. Herein, we used a rat healing model assayed after surgical transection of their medial collateral ligaments (MCLs). On days 3 and 7 post-injury, ligaments were collected and used for microarray analysis. …


The Effects Of Toning Shoes On The Postural Stability Of Women, Kevin Farley, Audrey Niverson, Renee Rogge Jan 2013

The Effects Of Toning Shoes On The Postural Stability Of Women, Kevin Farley, Audrey Niverson, Renee Rogge

Rose-Hulman Undergraduate Research Publications

Postural stability is the ability to maintain an upright posture and to keep the center of pressure (COP) within the limits of the body’s base of support. It is maintained through the dynamic integration of muscle activity and joint position. The foot, and therefore footwear, also plays a critical role in postural stability. The goal of this study is to determine the effects of toning shoes on the postural stability of women.


Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren Jan 2013

Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

A three-dimensional (3D) computational fluid dynamics study of shear rates around distal end-to-side anastomoses has been conducted. Three 51% and three 75% cross-sectional area-reduced 6 mm cylinders were modeled each with a bypass cylinder attached at a 30-degree angle at different placements distal to the constriction. Steady, incompressible, Newtonian blood flow was assumed, and the full Reynolds-averaged Navier-Stokes equations, turbulent kinetic energy, and specific dissipation rate equations were solved on a locally structured multiblock mesh with hexahedral elements. Consequently, distal placement of an end-to-side bypass graft anastomosis was found to have an influence on the shear rate magnitudes. For the …


Bone Properties By Nanoindentation In Mild And Severe Osteogenesis Imperfecta, Carolyne Albert, John Jameson, Jeffrey M. Toth, Peter Smith, Gerald F. Harris Jan 2013

Bone Properties By Nanoindentation In Mild And Severe Osteogenesis Imperfecta, Carolyne Albert, John Jameson, Jeffrey M. Toth, Peter Smith, Gerald F. Harris

Biomedical Engineering Faculty Research and Publications

Background

Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility. Previous research suggests that impaired collagen network and abnormal mineralization affect bone tissue properties, however, little data is yet available to describe bone material properties in individuals with this disorder. Bone material properties have not been characterized in individuals with the most common form of osteogenesis imperfecta, type I.

Methods

Bone tissue elastic modulus and hardness were measured by nanoindentation in eleven osteotomy specimens that were harvested from children with osteogenesis imperfecta during routine surgeries. These properties were compared between osteogenesis imperfecta types I (mild, n = …