Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering

PDF

Utah State University

Series

2019

Human pluripotent stem cells

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu Mar 2019

Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu

Biological Engineering Faculty Publications

Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture …