Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Novel Brain Computer Interface Design, Steven Vogan Aug 2023

A Novel Brain Computer Interface Design, Steven Vogan

Senior Honors Theses

A brain computer interface (BCI) is a system which connects neural signals to a computer system. They have been used for controlling systems including robotics, on-screen computer control such as mouse movement, typing, and synthesizing audio signals. Invasive, or implanted, systems are often long-term medical solutions, or used for research where very clear signal is required. Non-invasive systems usually rely on exterior signals gathered through a headset using one or more electrode sensors. These signals are composed of sums of neuron activation potentials from brain activity and can be used to determine particular aspects of brain function. All BCIs rely …


Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy Apr 2016

Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy

Senior Honors Theses

Advances in neuroprosthetics in recent years have made an enormous impact on the quality of life for many people with disabilities, helping them regain the functionality of damaged or impaired abilities. One of the main hurdles to regaining full functionality regarding neuroprosthetics is the integration between the neural prosthetic device and the method in which the neural prosthetic device is controlled or manipulated to function correctly and efficiently. One of the most promising methods for integrating neural prosthetics to an efficient method of control is through Brian-computer Interfacing (BCI). With this method, the neuroprosthetic device is integrated into the human …


Nanopulse Generators: Their Design And Application To Cancer Therapy Studies, Daniel P. Wernig Dec 2014

Nanopulse Generators: Their Design And Application To Cancer Therapy Studies, Daniel P. Wernig

Senior Honors Theses

Effective nanopulse generators have become critical in recent decades concerning the study of subcellular affects in response to nanosecond pulsed electric fields. It has been observed that nanosecond duration electric pulses can target intracellular organelles, ultimately leading to cell apoptosis, suggesting the possibility of a new, minimally invasive, low risk cancer therapy methodology. The standard topology for developing a medical nanopulser is the Blumlein “transmission line” approach. This approach relies on the nearly infinitesimal, yet finite amount of time required for an electromagnetic field to propagate down a short transmission line. Prior to design, requirements and constraints must be defined …