Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …


Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong Apr 2003

Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong

Physics Theses & Dissertations

A number of sensitive applications would be greatly benefited by the development of better cold cathodes that employ the electron field emission process. Among the many kinds of field emitters that could be tried, carbon nanotubes (CNT) have a number of distinct advantages because of their unique geometrical structure, chemical inertness, mechanical stiffness, and high thermal and electrical conductivities. This dissertation describes research in which CNT cathodes were fabricated and their emission characteristics were measured.

Multi-walled carbon nanotubes (MWNT) were grown by chemical vapor deposition (CVD) on various substrates: Ni and Hastelloy gauze, 304 stainless steel (SS) plates, and Ni-coated …