Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

Series

2022

Institution
Keyword
Publication

Articles 1 - 30 of 43

Full-Text Articles in Engineering

Emulating Future Neurotechnology Using Magic, Jay A. Olson, Mariève Cyr, Despina Z. Artenie, Thomas Strandberg, Lars Hall, Matthew L. Tompkins, Amir Raz, Petter Johansson Dec 2022

Emulating Future Neurotechnology Using Magic, Jay A. Olson, Mariève Cyr, Despina Z. Artenie, Thomas Strandberg, Lars Hall, Matthew L. Tompkins, Amir Raz, Petter Johansson

Psychology Faculty Articles and Research

Recent developments in neuroscience and artificial intelligence have allowed machines to decode mental processes with growing accuracy. Neuroethicists have speculated that perfecting these technologies may result in reactions ranging from an invasion of privacy to an increase in self-understanding. Yet, evaluating these predictions is difficult given that people are poor at forecasting their reactions. To address this, we developed a paradigm using elements of performance magic to emulate future neurotechnologies. We led 59 participants to believe that a (sham) neurotechnological machine could infer their preferences, detect their errors, and reveal their deep-seated attitudes. The machine gave participants randomly assigned positive …


Recall Distortion In Neural Network Pruning And The Undecayed Pruning Algorithm, Aidan Good, Jiaqi Lin, Hannah Sieg, Mikey Ferguson, Xin Yu, Shandian Zhe, Jerzy Wieczorek, Thiago Serra Nov 2022

Recall Distortion In Neural Network Pruning And The Undecayed Pruning Algorithm, Aidan Good, Jiaqi Lin, Hannah Sieg, Mikey Ferguson, Xin Yu, Shandian Zhe, Jerzy Wieczorek, Thiago Serra

Faculty Conference Papers and Presentations

Pruning techniques have been successfully used in neural networks to trade accuracy for sparsity. However, the impact of network pruning is not uniform: prior work has shown that the recall for underrepresented classes in a dataset may be more negatively affected. In this work, we study such relative distortions in recall by hypothesizing an intensification effect that is inherent to the model. Namely, that pruning makes recall relatively worse for a class with recall below accuracy and, conversely, that it makes recall relatively better for a class with recall above accuracy. In addition, we propose a new pruning algorithm aimed …


Agglomerative Hierarchical Clustering With Dynamic Time Warping For Household Load Curve Clustering, Fadi Almahamid, Katarina Grolinger Oct 2022

Agglomerative Hierarchical Clustering With Dynamic Time Warping For Household Load Curve Clustering, Fadi Almahamid, Katarina Grolinger

Electrical and Computer Engineering Publications

Energy companies often implement various demand response (DR) programs to better match electricity demand and supply by offering the consumers incentives to reduce their demand during critical periods. Classifying clients according to their consumption patterns enables targeting specific groups of consumers for DR. Traditional clustering algorithms use standard distance measurement to find the distance between two points. The results produced by clustering algorithms such as K-means, K-medoids, and Gaussian Mixture Models depend on the clustering parameters or initial clusters. In contrast, our methodology uses a shape-based approach that combines Agglomerative Hierarchical Clustering (AHC) with Dynamic Time Warping (DTW) to classify …


Tutorial: Neuro-Symbolic Ai For Mental Healthcare, Kaushik Roy, Usha Lokala, Manas Gaur, Amit Sheth Oct 2022

Tutorial: Neuro-Symbolic Ai For Mental Healthcare, Kaushik Roy, Usha Lokala, Manas Gaur, Amit Sheth

Publications

Artificial Intelligence (AI) systems for mental healthcare (MHCare) have been ever-growing after realizing the importance of early interventions for patients with chronic mental health (MH) conditions. Social media (SocMedia) emerged as the go-to platform for supporting patients seeking MHCare. The creation of peer-support groups without social stigma has resulted in patients transitioning from clinical settings to SocMedia supported interactions for quick help. Researchers started exploring SocMedia content in search of cues that showcase correlation or causation between different MH conditions to design better interventional strategies. User-level Classification-based AI systems were designed to leverage diverse SocMedia data from various MH conditions, …


A Carbon-Aware Planning Framework For Production Scheduling In Mining, Nurual Asyikeen Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi Sep 2022

A Carbon-Aware Planning Framework For Production Scheduling In Mining, Nurual Asyikeen Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi

Research Collection School Of Computing and Information Systems

Managing the flow of excavated materials from a mine pit and the subsequent processing steps is the logistical challenge in mining. Mine planning needs to consider various geometric and resource constraints while maximizing the net present value (NPV) of profits over a long horizon. This mine planning problem has been modelled and solved as a precedence constrained production scheduling problem (PCPSP) using heuristics, due to its NP-hardness. However, the recent push for sustainable and carbon-aware mining practices calls for new planning approaches. In this paper, we propose an efficient temporally decomposed greedy Lagrangian relaxation (TDGLR) approach to maximize profits while …


Two-Phase Matheuristic For The Vehicle Routing Problem With Reverse Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu Sep 2022

Two-Phase Matheuristic For The Vehicle Routing Problem With Reverse Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

Cross-dockingis a useful concept used by many companies to control the product flow. It enables the transshipment process of products from suppliers to customers. This research thus extends the benefit of cross-docking with reverse logistics, since return process management has become an important field in various businesses. The vehicle routing problem in a distribution network is considered to be an integrated model, namely the vehicle routing problem with reverse cross-docking (VRP-RCD). This study develops a mathematical model to minimize the costs of moving products in a four-level supply chain network that involves suppliers, cross-dock, customers, and outlets. A matheuristic based …


Joint Chance-Constrained Staffing Optimization In Multi-Skill Call Centers, Tien Thanh Dam, Thuy Anh Ta, Tien Mai Aug 2022

Joint Chance-Constrained Staffing Optimization In Multi-Skill Call Centers, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

This paper concerns the staffing optimization problem in multi-skill call centers. The objective is to find a minimal cost staffing solution while meeting a target level for the quality of service (QoS) to customers. We consider a staffing problem in which joint chance constraints are imposed on the QoS of the day. Our joint chance-constrained formulation is more rational capturing the correlation between different call types, as compared to separate chance-constrained versions considered in previous studies. We show that, in general, the probability functions in the joint-chance constraints display S-shaped curves, and the optimal solutions should belong to the concave …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Multi-Objective Evolutionary Algorithm Based On Rbf Network For Solving The Stochastic Vehicle Routing Problem, Yunyun Niu, Jie Shao, Jianhua Xiao, Wen Song, Zhiguang Cao Jul 2022

Multi-Objective Evolutionary Algorithm Based On Rbf Network For Solving The Stochastic Vehicle Routing Problem, Yunyun Niu, Jie Shao, Jianhua Xiao, Wen Song, Zhiguang Cao

Research Collection School Of Computing and Information Systems

Solving the multi-objective vehicle routing problem with stochastic demand (MO-VRPSD) is challenging due to its non-deterministic property and conflicting objectives. Most multi -objective evolutionary algorithm dealing with this problem update current population without any guidance from previous searching experience. In this paper, a multi -objective evolutionary algorithm based on artificial neural networks is proposed to tackle the MO-VRPSD. Particularly, during the evolutionary process, a radial basis function net-work (RBFN) is exploited to learn the potential knowledge of individuals, generate hypoth-esis and instantiate hypothesis. The RBFN evaluates individuals with different scores and generates new individuals with higher quality while taking into …


Monofacial Vs Bifacial Solar Photovoltaic Systems In Snowy Environments, Koami Soulemane Hayibo, Aliaksei Petsiuk, Pierce Mayville, Laura Brown, Joshua M. Pearce Jun 2022

Monofacial Vs Bifacial Solar Photovoltaic Systems In Snowy Environments, Koami Soulemane Hayibo, Aliaksei Petsiuk, Pierce Mayville, Laura Brown, Joshua M. Pearce

Electrical and Computer Engineering Publications

There has been a recent surge in interest in the more accurate snow loss estimates for solar photovoltaic (PV) systems as large-scale deployments move into northern latitudes. Preliminary results show bifacial modules may clear snow faster than monofacial PV. This study analyzes snow losses on these two types of systems using empirical hourly data including energy, solar irradiation and albedo, and open-source image processing methods from images of the arrays in a northern environment in the winter. Projection transformations based on reference anchor points and snowless ground truth images provide reliable masking and optical distortion correction with fixed surveillance cameras. …


Single-Pass Inline Pipeline 3d Reconstruction Using Depth Camera Array, Zhexiong Shang, Zhigang Shen Jun 2022

Single-Pass Inline Pipeline 3d Reconstruction Using Depth Camera Array, Zhexiong Shang, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

A novel inline inspection (ILI) approach using depth cameras array (DCA) is introduced to create high-fidelity, dense 3D pipeline models. A new camera calibration method is introduced to register the color and the depth information of the cameras into a unified pipe model. By incorporating the calibration outcomes into a robust camera motion estimation approach, dense and complete 3D pipe surface reconstruction is achieved by using only the inline image data collected by a self-powered ILI rover in a single pass through a straight pipeline. The outcomes of the laboratory experiments demonstrate one-millimeter geometrical accuracy and 0.1-pixel photometric accuracy. …


Training Thinner And Deeper Neural Networks: Jumpstart Regularization, Carles Riera, Camilo Rey, Thiago Serra, Eloi Puertas, Oriol Pujol Jun 2022

Training Thinner And Deeper Neural Networks: Jumpstart Regularization, Carles Riera, Camilo Rey, Thiago Serra, Eloi Puertas, Oriol Pujol

Faculty Conference Papers and Presentations

Neural networks are more expressive when they have multiple layers. In turn, conventional training methods are only successful if the depth does not lead to numerical issues such as exploding or vanishing gradients, which occur less frequently when the layers are sufficiently wide. However, increasing width to attain greater depth entails the use of heavier computational resources and leads to overparameterized models. These subsequent issues have been partially addressed by model compression methods such as quantization and pruning, some of which relying on normalization-based regularization of the loss function to make the effect of most parameters negligible. In this work, …


A Unified View Of A Human Digital Twin, Michael Miller, Emily Spatz Jun 2022

A Unified View Of A Human Digital Twin, Michael Miller, Emily Spatz

Faculty Publications

The term human digital twin has recently been applied in many domains, including medical and manufacturing. This term extends the digital twin concept, which has been illustrated to provide enhanced system performance as it combines system models and analyses with real-time measurements for an individual system to improve system maintenance. Human digital twins have the potential to change the practice of human system integration as these systems employ real-time sensing and feedback to tightly couple measurements of human performance, behavior, and environmental influences throughout a product’s life cycle to human models to improve system design and performance. However, as this …


Officers: Operational Framework For Intelligent Crime-And-Emergency Response Scheduling, Jonathan David Chase, Siong Thye Goh, Tran Phong, Hoong Chuin Lau Jun 2022

Officers: Operational Framework For Intelligent Crime-And-Emergency Response Scheduling, Jonathan David Chase, Siong Thye Goh, Tran Phong, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

In the quest to achieve better response times in dense urban environments, law enforcement agencies are seeking AI-driven planning systems to inform their patrol strategies. In this paper, we present a framework, OFFICERS, for deployment planning that learns from historical data to generate deployment schedules on a daily basis. We accurately predict incidents using ST-ResNet, a deep learning technique that captures wide-ranging spatio-temporal dependencies, and solve a large-scale optimization problem to schedule deployment, significantly improving its scalability through a simulated annealing solver. Methodologically, our approach outperforms our previous works where prediction was done using Generative Adversarial Networks, and optimization was …


Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell May 2022

Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell

University Scholar Projects

This project aims to determine the feasibility of using NeuroEvolution of Augmenting Topologies (NEAT), an advanced neural network evolution scheme, to optimize orbital transfer trajectories. More specifically, this project compares a genetically evolved neural network to a standard Hohmann transfer between Earth and Mars. To test these two methods, an N-body simulation environment was created to accurately determine the result of gravitational interactions on a theoretical spacecraft when combined with planned engine burns. Once created, this simulation environment was used to train the neural networks created using the NEAT Python module. A genetic algorithm was used to modify the topology …


Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham May 2022

Hierarchical Value Decomposition For Effective On-Demand Ride Pooling, Hao Jiang, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

On-demand ride-pooling (e.g., UberPool, GrabShare) services focus on serving multiple different customer requests using each vehicle, i.e., an empty or partially filled vehicle can be assigned requests from different passengers with different origins and destinations. On the other hand, in Taxi on Demand (ToD) services (e.g., UberX), one vehicle is assigned to only one request at a time. On-demand ride pooling is not only beneficial to customers (lower cost), drivers (higher revenue per trip) and aggregation companies (higher revenue), but is also of crucial importance to the environment as it reduces the number of vehicles required on the roads. Since …


Benchmarking Library Recognition In Tweets, Ting Zhang, Divya Prabha Chandrasekaran, Ferdian Thung, David Lo May 2022

Benchmarking Library Recognition In Tweets, Ting Zhang, Divya Prabha Chandrasekaran, Ferdian Thung, David Lo

Research Collection School Of Computing and Information Systems

Software developers often use social media (such as Twitter) to shareprogramming knowledge such as new tools, sample code snippets,and tips on programming. One of the topics they talk about is thesoftware library. The tweets may contain useful information abouta library. A good understanding of this information, e.g., on thedeveloper’s views regarding a library can be beneficial to weigh thepros and cons of using the library as well as the general sentimentstowards the library. However, it is not trivial to recognize whethera word actually refers to a library or other meanings. For example,a tweet mentioning the word “pandas" may refer to …


Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger Apr 2022

Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger

Faculty Publications

Visual homing is a lightweight approach to visual navigation which does not require GPS. It is very attractive for robot platforms with a low computational capacity. However, a limitation is that the stored home location must be initially within the field of view of the robot. Motivated by the increasing ubiquity of camera information we propose to address this line-of-sight limitation by leveraging camera information from other robots and fixed cameras. To home to a location that is not initially within view, a robot must be able to identify a common visual landmark with another robot that can be used …


Improving Feature Generalizability With Multitask Learning In Class Incremental Learning, Dong Ma, Chi Ian Tang, Cecilia Mascolo Apr 2022

Improving Feature Generalizability With Multitask Learning In Class Incremental Learning, Dong Ma, Chi Ian Tang, Cecilia Mascolo

Research Collection School Of Computing and Information Systems

Many deep learning applications, like keyword spotting [1], [2], require the incorporation of new concepts (classes) over time, referred to as Class Incremental Learning (CIL). The major challenge in CIL is catastrophic forgetting, i.e., preserving as much of the old knowledge as possible while learning new tasks. Various techniques, such as regularization, knowledge distillation, and the use of exemplars, have been proposed to resolve this issue. However, prior works primarily focus on the incremental learning step, while ignoring the optimization during the base model training. We hypothesise that a more transferable and generalizable feature representation from the base model would …


Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai Apr 2022

Understanding The Mechanism Of Deep Learning Frameworks In Lesion Detection For Pathological Images With Breast Cancer, Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, Yanhong Tai

Electrical & Computer Engineering Faculty Publications

With the advances of scanning sensors and deep learning algorithms, computational pathology has drawn much attention in recent years and started to play an important role in the clinical workflow. Computer-aided detection (CADe) systems have been developed to assist pathologists in slide assessment, increasing diagnosis efficiency and reducing misdetections. In this study, we conducted four experiments to demonstrate that the features learned by deep learning models are interpretable from a pathological perspective. In addition, classifiers such as the support vector machine (SVM) and random forests (RF) were used in experiments to replace the fully connected layers and decompose the end-to-end …


Volume Introduction, I. Glenn Cohen, Timo Minssen, W. Nicholson Price Ii, Christopher Robertson, Carmel Shachar Mar 2022

Volume Introduction, I. Glenn Cohen, Timo Minssen, W. Nicholson Price Ii, Christopher Robertson, Carmel Shachar

Other Publications

Medical devices have historically been less regulated than their drug and biologic counterparts. A benefit of this less demanding regulatory regime is facilitating innovation by making new devices available to consumers in a timely fashion. Nevertheless, there is increasing concern that this approach raises serious public health and safety concerns. The Institute of Medicine in 2011 published a critique of the American pathway allowing moderate-risk devices to be brought to the market through the less-rigorous 501(k) pathway,1 flagging a need for increased postmarket review and surveillance. High-profile recalls of medical devices, such as vaginal mesh products, along with reports globally …


An Ensemble Approach For Patient Prognosis Of Head And Neck Tumor Using Multimodal Data, Numan Saeed, Roba Al Majzoub, Ikboljon Sobirov, Mohammad Yaqub Feb 2022

An Ensemble Approach For Patient Prognosis Of Head And Neck Tumor Using Multimodal Data, Numan Saeed, Roba Al Majzoub, Ikboljon Sobirov, Mohammad Yaqub

Computer Vision Faculty Publications

Accurate prognosis of a tumor can help doctors provide a proper course of treatment and, therefore, save the lives of many. Tradi-tional machine learning algorithms have been eminently useful in crafting prognostic models in the last few decades. Recently, deep learning algorithms have shown significant improvement when developing diag-nosis and prognosis solutions to different healthcare problems. However, most of these solutions rely solely on either imaging or clinical data. Utilizing patient tabular data such as demographics and patient med-ical history alongside imaging data in a multimodal approach to solve a prognosis task has started to gain more interest recently and …


Deep-Precognitive Diagnosis: Preventing Future Pandemics By Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network, Aviral Chharia, Rahul Upadhyay, Vinay Kumar, Chao Cheng, Jing Zhang, Tianyang Wang, Min Xu Feb 2022

Deep-Precognitive Diagnosis: Preventing Future Pandemics By Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network, Aviral Chharia, Rahul Upadhyay, Vinay Kumar, Chao Cheng, Jing Zhang, Tianyang Wang, Min Xu

Computer Vision Faculty Publications

Deep learning-based Computer-Aided Diagnosis has gained immense attention in recent years due to its capability to enhance diagnostic performance and elucidate complex clinical tasks. However, conventional supervised deep learning models are incapable of recognizing novel diseases that do not exist in the training dataset. Automated early-stage detection of novel infectious diseases can be vital in controlling their rapid spread. Moreover, the development of a conventional CAD model is only possible after disease outbreaks and datasets become available for training (viz. COVID-19 outbreak). Since novel diseases are unknown and cannot be included in training data, it is challenging to recognize them …


Subomiembed: Self-Supervised Representation Learning Of Multi-Omics Data For Cancer Type Classification, Sayed Hashim, Muhammad Ali, Karthik Nandakumar, Mohammad Yaqub Feb 2022

Subomiembed: Self-Supervised Representation Learning Of Multi-Omics Data For Cancer Type Classification, Sayed Hashim, Muhammad Ali, Karthik Nandakumar, Mohammad Yaqub

Computer Vision Faculty Publications

For personalized medicines, very crucial intrinsic information is present in high dimensional omics data which is difficult to capture due to the large number of molecular features and small number of available samples. Different types of omics data show various aspects of samples. Integration and analysis of multi-omics data give us a broad view of tumours, which can improve clinical decision making. Omics data, mainly DNA methylation and gene expression profiles are usually high dimensional data with a lot of molecular features. In recent years, variational autoencoders (VAE) [13] have been extensively used in embedding image and text data into …


Hyperparameter Optimization For Covid-19 Chest X-Ray Classification, Ibraheem Hamdi, Muhammad Ridzuan, Mohammad Yaqub Jan 2022

Hyperparameter Optimization For Covid-19 Chest X-Ray Classification, Ibraheem Hamdi, Muhammad Ridzuan, Mohammad Yaqub

Computer Vision Faculty Publications

Despite the introduction of vaccines, Coronavirus disease (COVID-19) remains a worldwide dilemma, continuously developing new variants such as Delta and the recent Omicron. The current standard for testing is through polymerase chain reaction (PCR). However, PCRs can be expensive, slow, and/or inaccessible to many people. X-rays on the other hand have been readily used since the early 20th century and are relatively cheaper, quicker to obtain, and typically covered by health insurance. With a careful selection of model, hyperparameters, and augmentations, we show that it is possible to develop models with 83% accuracy in binary classification and 64% in multi-class …


Transformers In Medical Imaging: A Survey, Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, Huazhu Fu Jan 2022

Transformers In Medical Imaging: A Survey, Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, Huazhu Fu

Computer Vision Faculty Publications

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as de facto operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved …


Deep Learning-Based Quality Assessment Of Clinical Protocol Adherence In Fetal Ultrasound Dating Scans, Sevim Cengiz, Mohammad Yaqub Jan 2022

Deep Learning-Based Quality Assessment Of Clinical Protocol Adherence In Fetal Ultrasound Dating Scans, Sevim Cengiz, Mohammad Yaqub

Computer Vision Faculty Publications

To assess fetal health during pregnancy, doctors use the gestational age (GA) calculation based on the Crown Rump Length (CRL) measurement in order to check for fetal size and growth trajectory. However, GA estimation based on CRL, requires proper positioning of calipers on the fetal crown and rump view, which is not always an easy plane to find, especially for an inexperienced sonographer. Finding a slightly oblique view from the true CRL view could lead to a different CRL value and therefore incorrect estimation of GA. This study presents an AI-based method for a quality assessment of the CRL view …


Automatic Segmentation Of Head And Neck Tumor: How Powerful Transformers Are?, Ikboljon Sobirov, Otabek Nazarov, Hussain Alasmawi, Mohammad Yaqub Jan 2022

Automatic Segmentation Of Head And Neck Tumor: How Powerful Transformers Are?, Ikboljon Sobirov, Otabek Nazarov, Hussain Alasmawi, Mohammad Yaqub

Computer Vision Faculty Publications

Cancer is one of the leading causes of death worldwide, and head and neck (H&N) cancer is amongst the most prevalent types. Positron emission tomography and computed tomography are used to detect and segment the tumor region. Clinically, tumor segmentation is extensively time-consuming and prone to error. Machine learning, and deep learning in particular, can assist to automate this process, yielding results as accurate as the results of a clinician. In this research study, we develop a vision transformers-based method to automatically delineate H&N tumor, and compare its results to leading convolutional neural network (CNN)-based models. We use multi-modal data …


Is Contrastive Learning Suitable For Left Ventricular Segmentation In Echocardiographic Images?, Mohamed Saeed, Rand Muhtaseb, Mohammad Yaqub Jan 2022

Is Contrastive Learning Suitable For Left Ventricular Segmentation In Echocardiographic Images?, Mohamed Saeed, Rand Muhtaseb, Mohammad Yaqub

Computer Vision Faculty Publications

Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmenta-tion as it is difficult to have clinical experts manually annotate large volumes of data. One such task is the segmentation of cardiac structures in ultrasound images of the heart. In this paper, we argue whether or not contrastive pretraining is helpful for the segmentation of the left ventricle in echocardiography images. Furthermore, we study the effect of this on two segmentation networks, DeepLabV3, as well as the commonly used segmentation net-work, UNet. Our …


Challenges In Covid-19 Chest X-Ray Classification: Problematic Data Or Ineffective Approaches?, Muhammad Ridzuan, Ameera Ali Bawazir, Ivo Gollini Navarrete, Ibrahim Almakky, Mohammad Yaqub Jan 2022

Challenges In Covid-19 Chest X-Ray Classification: Problematic Data Or Ineffective Approaches?, Muhammad Ridzuan, Ameera Ali Bawazir, Ivo Gollini Navarrete, Ibrahim Almakky, Mohammad Yaqub

Computer Vision Faculty Publications

The value of quick, accurate, and confident diagnoses cannot be undermined to mitigate the effects of COVID-19 infection, particularly for severe cases. Enormous effort has been put towards developing deep learning methods to classify and detect COVID-19 infections from chest radiography images. However, recently some questions have been raised surrounding the clinical viability and effectiveness of such methods. In this work, we carry out extensive experiments on a large COVID-19 chest X-ray dataset to investigate the challenges faced with creating reliable solutions from both the data and machine learning perspectives. Accordingly, we offer an in-depth discussion into the challenges faced …