Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


Language Models For Rare Disease Information Extraction: Empirical Insights And Model Comparisons, Shashank Gupta Jan 2024

Language Models For Rare Disease Information Extraction: Empirical Insights And Model Comparisons, Shashank Gupta

Theses and Dissertations--Computer Science

End-to-end relation extraction (E2ERE) is a crucial task in natural language processing (NLP) that involves identifying and classifying semantic relationships between entities in text. This thesis compares three paradigms for end-to-end relation extraction (E2ERE) in biomedicine, focusing on rare diseases with discontinuous and nested entities. We evaluate Named Entity Recognition (NER) to Relation Extraction (RE) pipelines, sequence-to-sequence models, and generative pre-trained transformer (GPT) models using the RareDis information extraction dataset. Our findings indicate that pipeline models are the most effective, followed closely by sequence-to-sequence models. GPT models, despite having eight times as many parameters, perform worse than sequence-to-sequence models and …


Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai Jan 2024

Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai

Theses and Dissertations--Electrical and Computer Engineering

Artificial Intelligence (AI) has experienced remarkable success in recent years, solving complex computational problems across various domains, including computer vision, natural language processing, and pattern recognition. Much of this success can be attributed to the advancements in deep learning algorithms and models, particularly Artificial Neural Networks (ANNs). In recent times, deep ANNs have achieved unprecedented levels of accuracy, surpassing human capabilities in some cases. However, these deep ANN models come at a significant computational cost, with billions to trillions of parameters. Recent trends indicate that the number of parameters per ANN model will continue to grow exponentially in the foreseeable …


Peer-To-Peer Energy Trading In Smart Residential Environment With User Behavioral Modeling, Ashutosh Timilsina Jan 2023

Peer-To-Peer Energy Trading In Smart Residential Environment With User Behavioral Modeling, Ashutosh Timilsina

Theses and Dissertations--Computer Science

Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid.

Trading energy among users in a decentralized fashion has been referred …


Determining Power System Fault Location Using Neural Network Approach, Edward O. Ojini Jan 2022

Determining Power System Fault Location Using Neural Network Approach, Edward O. Ojini

Theses and Dissertations--Electrical and Computer Engineering

Fault location remains an extremely pivotal feature of the electric power grid as it ensures efficient operation of the grid and prevents large downtimes during fault occurrences. This will ultimately enhance and increase the reliability of the system. Since the invention of the electric grid, many approaches to fault location have been studied and documented. These approaches are still effective and are implemented in present times, and as the power grid becomes even more broadened with new forms of energy generation, transmission, and distribution technologies, continued study on these methods is necessary. This thesis will focus on adopting the artificial …


Artificial Intelligence And Soft Computing In Smart Structural Systems, Sajad Javadinasab Hormozabad Jan 2021

Artificial Intelligence And Soft Computing In Smart Structural Systems, Sajad Javadinasab Hormozabad

Theses and Dissertations--Civil Engineering

Next-generation smart cities are the key feature in the next chapter of human life. Cities that employ innovative and technology-driven solutions to improve the sustainability, resilience, prosperity, and amenity of the community are considered smart cities. Development of smart cities requires fundamental innovations in many technical and technological aspects including those contributing to smart structures. Smart technologies improve the structural performance against natural disasters like earthquakes, hurricanes, tornados, and promote the sustainability of structural systems. Next-generation smart structures encompass a variety of technologies including Structural Control (SC) and Structural Health Monitoring (SHM). SC covers methodologies and technologies that modify the …


Weakly Supervised Learning For Multi-Image Synthesis, Muhammad Usman Rafique Jan 2021

Weakly Supervised Learning For Multi-Image Synthesis, Muhammad Usman Rafique

Theses and Dissertations--Electrical and Computer Engineering

Machine learning-based approaches have been achieving state-of-the-art results on many computer vision tasks. While deep learning and convolutional networks have been incredibly popular, these approaches come at the expense of huge amounts of labeled data required for training. Manually annotating large amounts of data, often millions of images in a single dataset, is costly and time consuming. To deal with the problem of data annotation, the research community has been exploring approaches that require less amount of labelled data.

The central problem that we consider in this research is image synthesis without any manual labeling. Image synthesis is a classic …


Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic Jan 2020

Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic

Theses and Dissertations--Computer Science

Understanding free-flow speed is fundamental to transportation engineering in order to improve traffic flow, control, and planning. The free-flow speed of a road segment is the average speed of automobiles unaffected by traffic congestion or delay. Collecting speed data across a state is both expensive and time consuming. Some approaches have been presented to estimate speed using geometric road features for certain types of roads in limited environments. However, estimating speed at state scale for varying landscapes, environments, and road qualities has been relegated to manual engineering and expensive sensor networks. This thesis proposes an automated approach for estimating free-flow …


Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery Jan 2020

Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery

Theses and Dissertations--Electrical and Computer Engineering

Transmission lines are designed to transport large amounts of electrical power from the point of generation to the point of consumption. Since transmission lines are built to span over long distances, they are frequently exposed to many different situations that can cause abnormal conditions known as electrical faults. Electrical faults, when isolated, can cripple the transmission system as power flows are directed around these faults therefore leading to other numerous potential issues such as thermal and voltage violations, customer interruptions, or cascading events. When faults occur, protection systems installed near the faulted transmission lines will isolate these faults from the …


A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal Jan 2020

A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal

Theses and Dissertations--Electrical and Computer Engineering

Advances in computing power in recent years have facilitated developments in autonomous robotic systems. These robotic systems can be used in prosthetic limbs, wearhouse packaging and sorting, assembly line production, as well as many other applications. Designing these autonomous systems typically requires robotic system and world models (for classical control based strategies) or time consuming and computationally expensive training (for learning based strategies). Often these requirements are difficult to fulfill. There are ways to combine classical control and learning based strategies that can mitigate both requirements. One of these ways is to use a gravity compensated torque control with reinforcement …


Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song Jan 2019

Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song

Theses and Dissertations--Computer Science

Road crashes are one of the main causes of death in the United States. To reduce the number of accidents, roadway assessment programs take a proactive approach, collecting data and identifying high-risk roads before crashes occur. However, the cost of data acquisition and manual annotation has restricted the effect of these programs. In this thesis, we propose methods to automate the task of roadway safety assessment using deep learning. Specifically, we trained convolutional neural networks on publicly available roadway images to predict safety-related metrics: the star rating score and free-flow speed. Inference speeds for our methods are mere milliseconds, enabling …


Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal Jan 2019

Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal

Theses and Dissertations--Computer Science

Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task …


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree …