Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Artificial Intelligence and Robotics

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 470

Full-Text Articles in Engineering

Back To The Future: A Case For The Resurgence Of Approximation Theory For Enabling Data Driven “Intelligence”, Michael Dominic Ciocco Jun 2024

Back To The Future: A Case For The Resurgence Of Approximation Theory For Enabling Data Driven “Intelligence”, Michael Dominic Ciocco

Theses and Dissertations

Artificial Intelligence (AI) has exploded into mainstream consciousness with commercial investments exceeding $90 billion in the last year alone. Inasmuch as consumer-facing applications such ChatGPT offer astounding access to algorithms that were hitherto restricted to academic research labs, public focus of attention on AI has created an avalanche of misinformation. The nexus of investor-driven hype, “surprising” inaccuracies in the answers provided by AI models – now anthropomorphically labeled as “hallucinations”, and impending legislation by well-meaning and concerned governments has resulted in a crisis of confidence in the science of AI. The primary driver for AI’s recent growth is the convergence …


Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao May 2024

Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao

All Dissertations

Deep neural networks (DNNs) have achieved unprecedented success in many fields. However, robustness and trustworthiness have become emerging concerns since DNNs are vulnerable to various attacks and susceptible to data distributional shifts. Attacks such as data poisoning and out-of-distribution scenarios such as natural corruption significantly undermine the performance and robustness of DNNs in model training and inference and impose uncertainty and insecurity on the deployment in real-world applications. Thus, it is crucial to investigate threats and challenges against deep neural networks, develop corresponding countermeasures, and dig into design tactics to secure their safety and reliability. The works investigated in this …


Genetic Algorithm Optimization Of Experiment Design For Targeted Uncertainty Reduction, Alexander Amedeo Depillis May 2024

Genetic Algorithm Optimization Of Experiment Design For Targeted Uncertainty Reduction, Alexander Amedeo Depillis

Masters Theses

Nuclear cross sections are a set of parameters that capture probability information about various nuclear reactions. Nuclear cross section data must be experimentally measured, and this results in simulations with nuclear data-induced uncertainties on simulation outputs. This nuclear data-induced uncertainty on most parameters of interest can be reduced by adjusting the nuclear data based on the results from an experiment. Integral nuclear experiments are experiments where the results are related to many different cross sections. Nuclear data may be adjusted to have less uncertainty by adjusting them to match the results obtained from integral experiments. Different integral experiments will adjust …


Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito Apr 2024

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito

Doctoral Dissertations and Master's Theses

The increasing reliance on Global Positioning System (GPS) technology across various sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoofing. This thesis presents an analysis into detection and mitigation strategies for enhancing the resilience of GPS receivers against jamming and spoofing attacks. The research entails the development of a simulated GPS signal and a receiver model to accurately decode and extract information from simulated GPS signals. The study implements the generation of jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical settings. The core innovation lies in the integration of machine learning …


Computational Modeling And Analysis Of Facial Expressions And Gaze For Discovery Of Candidate Behavioral Biomarkers For Children And Young Adults With Autism Spectrum Disorder, Megan Anita Witherow Apr 2024

Computational Modeling And Analysis Of Facial Expressions And Gaze For Discovery Of Candidate Behavioral Biomarkers For Children And Young Adults With Autism Spectrum Disorder, Megan Anita Witherow

Electrical & Computer Engineering Theses & Dissertations

Facial expression production and perception in autism spectrum disorder (ASD) suggest the potential presence of behavioral biomarkers that may stratify individuals on the spectrum into prognostic or treatment subgroups. High-speed internet and the ease of technology have enabled remote, scalable, affordable, and timely access to medical care, such as measurements of ASDrelated behaviors in familiar environments to complement clinical observation. Machine and deep learning (DL)-based analysis of video tracking (VT) of expression production and eye tracking (ET) of expression perception may aid stratification biomarker discovery for children and young adults with ASD. However, there are open challenges in 1) facial …


Time Series Models For Predicting Application Gpu Utilization And Power Draw Based On Trace Data, Dorothy Xiaoshuang Parry Apr 2024

Time Series Models For Predicting Application Gpu Utilization And Power Draw Based On Trace Data, Dorothy Xiaoshuang Parry

Electrical & Computer Engineering Theses & Dissertations

This work explores collecting performance metrics and leveraging various statistical and machine learning time series predictive models on a memory-intensive application, Inception v3. Trace data collected using nvidia-smi measured GPU utilization and power draw for two runs of Inception3. Experimental results from the statistical and machine learning-based time series predictive algorithms showed that the predictions from statistical-based models were unable to capture the complex changes in the trace data. The Probabilistic TNN model provided the best results for the power draw trace, according to the test evaluation metrics. For the GPU utilization trace, the RNN models produced the most accurate …


Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim Mar 2024

Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim

Masters Theses

Due to significant investment, research, and development efforts over the past decade, deep neural networks (DNNs) have achieved notable advancements in classification and regression domains. As a result, DNNs are considered valuable intellectual property for artificial intelligence providers. Prior work has demonstrated highly effective model extraction attacks which steal a DNN, dismantling the provider’s business model and paving the way for unethical or malicious activities, such as misuse of personal data, safety risks in critical systems, or spreading misinformation. This thesis explores the feasibility of model extraction attacks on mobile devices using aggregated runtime profiles as a side-channel to leak …


Attribution Robustness Of Neural Networks, Sunanda Gamage Feb 2024

Attribution Robustness Of Neural Networks, Sunanda Gamage

Electronic Thesis and Dissertation Repository

While deep neural networks have demonstrated excellent learning capabilities, explainability of model predictions remains a challenge due to their black box nature. Attributions or feature significance methods are tools for explaining model predictions, facilitating model debugging, human-machine collaborative decision making, and establishing trust and compliance in critical applications. Recent work has shown that attributions of neural networks can be distorted by imperceptible adversarial input perturbations, which makes attributions unreliable as an explainability method. This thesis addresses the research problem of attribution robustness of neural networks and introduces novel techniques that enable robust training at scale.

Firstly, a novel generic framework …


The Integration Of Neuromorphic Computing In Autonomous Robotic Systems, Md Abu Bakr Siddique Jan 2024

The Integration Of Neuromorphic Computing In Autonomous Robotic Systems, Md Abu Bakr Siddique

Dissertations, Master's Theses and Master's Reports

Deep Neural Networks (DNNs) have come a long way in many cognitive tasks by training on large, labeled datasets. However, this method has problems in places with limited data and energy, like when planetary robots are used or when edge computing is used [1]. In contrast to this data-heavy approach, animals demonstrate an innate ability to learn by communicating with their environment and forming associative memories among events and entities, a process known as associative learning [2-4]. For instance, rats in a T-maze learn to associate different stimuli with outcomes through exploration without needing labeled data [5]. This learning paradigm …


Language Models For Rare Disease Information Extraction: Empirical Insights And Model Comparisons, Shashank Gupta Jan 2024

Language Models For Rare Disease Information Extraction: Empirical Insights And Model Comparisons, Shashank Gupta

Theses and Dissertations--Computer Science

End-to-end relation extraction (E2ERE) is a crucial task in natural language processing (NLP) that involves identifying and classifying semantic relationships between entities in text. This thesis compares three paradigms for end-to-end relation extraction (E2ERE) in biomedicine, focusing on rare diseases with discontinuous and nested entities. We evaluate Named Entity Recognition (NER) to Relation Extraction (RE) pipelines, sequence-to-sequence models, and generative pre-trained transformer (GPT) models using the RareDis information extraction dataset. Our findings indicate that pipeline models are the most effective, followed closely by sequence-to-sequence models. GPT models, despite having eight times as many parameters, perform worse than sequence-to-sequence models and …


Towards Algorithmic Justice: Human Centered Approaches To Artificial Intelligence Design To Support Fairness And Mitigate Bias In The Financial Services Sector, Jihyun Kim Jan 2024

Towards Algorithmic Justice: Human Centered Approaches To Artificial Intelligence Design To Support Fairness And Mitigate Bias In The Financial Services Sector, Jihyun Kim

CMC Senior Theses

Artificial Intelligence (AI) has positively transformed the Financial services sector but also introduced AI biases against protected groups, amplifying existing prejudices against marginalized communities. The financial decisions made by biased algorithms could cause life-changing ramifications in applications such as lending and credit scoring. Human Centered AI (HCAI) is an emerging concept where AI systems seek to augment, not replace human abilities while preserving human control to ensure transparency, equity and privacy. The evolving field of HCAI shares a common ground with and can be enhanced by the Human Centered Design principles in that they both put humans, the user, at …


Implementing Unmanned Aerial Vehicles To Collect Human Gait Data At Distance And Altitude For Identification And Re-Identification, Donn E. Bartram Jan 2024

Implementing Unmanned Aerial Vehicles To Collect Human Gait Data At Distance And Altitude For Identification And Re-Identification, Donn E. Bartram

Graduate Theses, Dissertations, and Problem Reports

Gait patterns are a class of biometric information pertaining to the way a person moves and poses. Gait information is unique to each person and can be used to identify and reidentify people. Historically, this task has been achieved through the use of multiple ground-based imaging sensors. However, as Unmanned Aerial Vehicles (UAVs) advance, they present the opportunity to evolve the process of persons identification and re-identification. Collecting human gait data using UAVs at distances ranging from 20m to 500m and altitudes ranging from 0m to 120m is a challenging task. The current biometric data collection methods, primarily designed for …


Robot-Based 3d Printing, Aaron Hoffman Jan 2024

Robot-Based 3d Printing, Aaron Hoffman

Williams Honors College, Honors Research Projects

Details of a large-format 3D printer created to print experimental materials, test multi-axis print techniques, and quickly print large objects. The printer consists of a 7-axis robotic arm and pellet extruder, which are controlled by a PC. Experimental materials such as recycled polymers or carbon-fiber reinforced materials can be easily tested with the pellet format of the extruder. The printer can perform different printing techniques and can be used to experiment with material properties when using these techniques with different polymers. The print surface is around 5 times larger than the average commercial 3D printer, and the robotic arm provides …


Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart Jan 2024

Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart

Theses and Dissertations

Enabling machines to learn measures of human activity from bioelectric signals has many applications in human-machine interaction and healthcare. However, labeled activity recognition datasets are costly to collect and highly varied, which challenges machine learning techniques that rely on large datasets. Furthermore, activity recognition in practice needs to account for user trust - models are motivated to enable interpretability, usability, and information privacy. The objective of this dissertation is to improve adaptability and trustworthiness of machine learning models for human activity recognition from bioelectric signals. We improve adaptability by developing pretraining techniques that initialize models for later specialization to unseen …


Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso Jan 2024

Nonuniform Sampling-Based Breast Cancer Classification, Santiago Posso

Theses and Dissertations--Electrical and Computer Engineering

The emergence of deep learning models and their success in visual object recognition have fueled the medical imaging community's interest in integrating these algorithms to improve medical diagnosis. However, natural images, which have been the main focus of deep learning models and mammograms, exhibit fundamental differences. First, breast tissue abnormalities are often smaller than salient objects in natural images. Second, breast images have significantly higher resolutions but are generally heavily downsampled to fit these images to deep learning models. Models that handle high-resolution mammograms require many exams and complex architectures. Additionally, spatially resizing mammograms leads to losing discriminative details essential …


Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai Jan 2024

Cross-Layer Design Of Highly Scalable And Energy-Efficient Ai Accelerator Systems Using Photonic Integrated Circuits, Sairam Sri Vatsavai

Theses and Dissertations--Electrical and Computer Engineering

Artificial Intelligence (AI) has experienced remarkable success in recent years, solving complex computational problems across various domains, including computer vision, natural language processing, and pattern recognition. Much of this success can be attributed to the advancements in deep learning algorithms and models, particularly Artificial Neural Networks (ANNs). In recent times, deep ANNs have achieved unprecedented levels of accuracy, surpassing human capabilities in some cases. However, these deep ANN models come at a significant computational cost, with billions to trillions of parameters. Recent trends indicate that the number of parameters per ANN model will continue to grow exponentially in the foreseeable …


Disentangling Cyclic Causality: An Instance-Based Framework For Causal Discovery, Chase A. Yakaboski Jan 2024

Disentangling Cyclic Causality: An Instance-Based Framework For Causal Discovery, Chase A. Yakaboski

Dartmouth College Ph.D Dissertations

Correlation does not imply causation" is one of the fundamental principles taught in science, emphasizing that associations between variables do not necessarily indicate causality. Yet, over the past three decades, extensive research has begun to challenge this perspective by developing sophisticated methods to differentiate causal from correlative relationships. This research suggests that correlations often involve a blend of confounded and causal interactions, which, given certain assumptions, can be disentangled to uncover actionable insights and deepen our understanding of physical, biological, and societal systems.

Accurately discovering causal relationships from data amidst cyclic dynamics remains a challenging open problem in causality research. …


A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor Jan 2024

A Memory Efficient Deep Recurrent Q-Learning Approach For Autonomous Wildfire Surveillance, Jeremy A. Cantor

UNF Graduate Theses and Dissertations

Previous literature demonstrates that autonomous UAVs (unmanned aerial vehicles) have the po- tential to be utilized for wildfire surveillance. This advanced technology empowers firefighters by providing them with critical information, thereby facilitating more informed decision-making processes. This thesis applies deep Q-learning techniques to the problem of control policy design under the objective that the UAVs collectively identify the maximum number of locations that are under fire, assuming the UAVs can share their observations. The prohibitively large state space underlying the control policy motivates a neural network approximation, but prior work used only convolutional layers to extract spatial fire information from …


Transformer-Enabled Deep Reinforcement Learning For Coverage Path Planning, Daniel B. Tiu Jan 2024

Transformer-Enabled Deep Reinforcement Learning For Coverage Path Planning, Daniel B. Tiu

UNF Graduate Theses and Dissertations

Coverage path planning (CPP) is the problem of covering all points in an environment and is a well-researched topic in robotics due to its sheer practical relevance. This paper investigates such an offline CPP problem where the primary objective is to minimize the path length to achieve complete coverage. Furthermore, the literature suggests that taking turns leads to a higher energy use than going straight. To this end, we design a novel objective function that aims to minimize the number of turns as well. We have proposed a deep reinforcement learning (DRL)-based framework that uses a Transformer model. Unlike state-of-the-art …


Brain-Inspired Spatio-Temporal Learning With Application To Robotics, Thiago André Ferreira Medeiros Dec 2023

Brain-Inspired Spatio-Temporal Learning With Application To Robotics, Thiago André Ferreira Medeiros

USF Tampa Graduate Theses and Dissertations

The human brain still has many mysteries and one of them is how it encodes information. The following study intends to unravel at least one such mechanism. For this it will be demonstrated how a set of specialized neurons may use spatial and temporal information to encode information. These neurons, called Place Cells, become active when the animal enters a place in the environment, allowing it to build a cognitive map of the environment. In a recent paper by Scleidorovich et al. in 2022, it was demonstrated that it was possible to differentiate between two sequences of activations of a …


Decoding Usage And Adoption Behavior Of The Low-Carbon Transportation Market: An Ai-Driven Exploration, Vuban Chowdhury Dec 2023

Decoding Usage And Adoption Behavior Of The Low-Carbon Transportation Market: An Ai-Driven Exploration, Vuban Chowdhury

Graduate Theses and Dissertations

The transportation sector stands as a significant contributor to greenhouse gas emissions in the United States, with its environmental impact steadily escalating over the past few decades. This has prompted government agencies to facilitate the adoption and usage of low-carbon transportation (LCT) options as alternatives to fossil-fuel-powered transportation. LCTs include modes of transportation that minimize the overall carbon footprint of the transportation sector by relying on energy sources that are environmentally sustainable. These sustainable transportation options have also garnered significant interest in the transportation research community. For government agencies and researchers alike, a comprehensive understanding of the adoption and usage …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman Dec 2023

Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman

UNLV Theses, Dissertations, Professional Papers, and Capstones

The integration of Advanced Driving Assistance Systems (ADAS) and autonomous driving functionalities into contemporary vehicles has notably surged, driven by the remarkable progress in artificial intelligence (AI). These AI systems, capable of learning from real-world data, now exhibit the capability to perceive their surroundings via a suite of sensors, create optimal routes from source to destination, and execute vehicle control akin to a human driver.

Within the context of this thesis, we undertake a comprehensive exploration of three distinct yet interrelated ADAS and Autonomy projects. Our central objective is the implementation of autonomous driving(AD) technology at UNLV campus, culminating in …


Ai Assisted Workflows For Computational Electromagnetics And Antenna Design, Oameed Noakoasteen Nov 2023

Ai Assisted Workflows For Computational Electromagnetics And Antenna Design, Oameed Noakoasteen

Electrical and Computer Engineering ETDs

These days large volumes of data can be recorded and manipulated with relative ease. If valuable information can be extracted from them, these vast amounts of data can be a rich resource not just for the digital economy but also for scientific discovery and development of technology. When it comes to deriving valuable information from data, Machine Learning (ML) emerges as the key solution. To unlock the potential benefits of ML to science and technology, extensive research is needed to explore what algorithms are suitable and how they can be applied.

To shine light on various ways that ML can …


Smartphone Based Object Detection For Shark Spotting, Darrick W. Oliver Nov 2023

Smartphone Based Object Detection For Shark Spotting, Darrick W. Oliver

Master's Theses

Given concern over shark attacks in coastal regions, the recent use of unmanned aerial vehicles (UAVs), or drones, has increased to ensure the safety of beachgoers. However, much of city officials' process remains manual, with drone operation and review of footage still playing a significant role. In pursuit of a more automated solution, researchers have turned to the usage of neural networks to perform detection of sharks and other marine life. For on-device solutions, this has historically required assembling individual hardware components to form an embedded system to utilize the machine learning model. This means that the camera, neural processing …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff Oct 2023

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook Oct 2023

Spoken Language Processing And Modeling For Aviation Communications, Aaron Van De Brook

Doctoral Dissertations and Master's Theses

With recent advances in machine learning and deep learning technologies and the creation of larger aviation-specific corpora, applying natural language processing technologies, especially those based on transformer neural networks, to aviation communications is becoming increasingly feasible. Previous work has focused on machine learning applications to natural language processing, such as N-grams and word lattices. This thesis experiments with a process for pretraining transformer-based language models on aviation English corpora and compare the effectiveness and performance of language models transfer learned from pretrained checkpoints and those trained from their base weight initializations (trained from scratch). The results suggest that transformer language …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …