Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Reduction In Scc Form Pressure Through In-Situ Co2 Mineralization, Sean Monkman, Soo Duck Hwang, Kamal Khayat Sep 2024

Reduction In Scc Form Pressure Through In-Situ Co2 Mineralization, Sean Monkman, Soo Duck Hwang, Kamal Khayat

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

One challenge of using self-consolidating concrete (SCC) for cast-in-place structural applications is that the rheological properties of the concrete (low yield stress and low plastic viscosity) can lead to increased lateral pressure exerted on the formwork. High structural build up and thixotropy can reduce the lateral pressure, thereby allowing for simpler formwork and faster construction. The addition of CO2 to SCC, in proportions from 0.063 % to 0.250 %, by weight of cement, was investigated as a rheology modifier. The CO2 served to increase the plastic viscosity with little impact on the dynamic yield stress up to a …


Effect Of Concrete Mix Design Factors On Static Yield Stress Changes Due To Vibration, Ahmed Abd El Fattah, Dimitri Feys, Kyle Riding, Syed Imran Jan 2024

Effect Of Concrete Mix Design Factors On Static Yield Stress Changes Due To Vibration, Ahmed Abd El Fattah, Dimitri Feys, Kyle Riding, Syed Imran

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Digital fabrication of concrete structures has gained substantial research traction over the last decade, enabling efficient material use and adding more architectural freedom. Current research focuses on chemical and mineral admixtures, as well as manipulating the cement hydration reaction to control the yield stress evolution with time in the cement paste. Instead of providing yield stress through the concrete fluid properties, a high yield stress can be provided by interparticle friction from the use of high aggregate volumes and large nominal maximum aggregate size, with flow enhanced for material extrusion by vibration. Granular physics was applied to concrete mixture design …


Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Evaluating Structural Build-Up At Rest Of Mortar And Concrete, Sofiane Amziane, Kamal Khayat, Mohammed Sonebi, Arnaud Perrot Oct 2023

Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Evaluating Structural Build-Up At Rest Of Mortar And Concrete, Sofiane Amziane, Kamal Khayat, Mohammed Sonebi, Arnaud Perrot

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This Paper Presents the Results of a Round-Robin Testing Program Undertaken by RILEM TC-266-Measuring Rheological Properties of Cement-Based Materials in May 2018 at the Université D'Artois in Bethune, France. Seven Types of Rheometers Were Compared; They Consisted of Four ICAR Rheometers, Viskomat XL Rheometer, EBT-V Rheometer, Sliding Pipe Rheometer (SLIPER), RheoCAD Rheometer, and 4SCC Rheometer, as Well as the Plate Test. This Paper Discusses the Results of the Evolution of the Static Yield Stress at Rest of Three Mortar and Five Concrete Mixtures that Were Determined using Two ICAR Rheometers, Viskomat XL, and EBT-V Rheometers, as Well as the Plate …


Utilizing Waste Latex Paint Toward Improving The Performance Of Concrete, Mohamed Leithy, Eslam Gomaa, Ahmed A. Gheni, Mohamed Elgawady Aug 2023

Utilizing Waste Latex Paint Toward Improving The Performance Of Concrete, Mohamed Leithy, Eslam Gomaa, Ahmed A. Gheni, Mohamed Elgawady

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this paper, incorporating the waste latex paint (WLP) into the conventional concrete as a partial replacement of sand to improve its durability was investigated. The fresh and hardened characterizations, in addition to the durability of concrete, were examined. The slump test was used to evaluate the fresh properties, while the hardened properties were evaluated through the volume of voids and absorption rate, in addition to the compressive, splitting tensile, and flexural strengths tests. The durability performance was evaluated by the surface resistivity, bulk electrical resistivity, as well as freeze and thaw resistance tests. The results showed a reduction in …


Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Rheometers, Mixtures And Procedures, Dimitri Feys, Mohammed Sonebi, Sofiane Amziane, Chafika Djelal, Khadija El-Cheikh, Shirin Fataei, Markus Greim, Irina Ivanova, Helena Keller, Kamal Khayat, Laurent Libessart, Viktor Mechtcherine, Ivan Navarrete, Arnaud Perrot May 2023

Rilem Tc 266-Mrp: Round-Robin Rheological Tests On High Performance Mortar And Concrete With Adapted Rheology—Rheometers, Mixtures And Procedures, Dimitri Feys, Mohammed Sonebi, Sofiane Amziane, Chafika Djelal, Khadija El-Cheikh, Shirin Fataei, Markus Greim, Irina Ivanova, Helena Keller, Kamal Khayat, Laurent Libessart, Viktor Mechtcherine, Ivan Navarrete, Arnaud Perrot

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Recent developments in understanding the rheology of mortar and concrete as well as applying this understanding in the practice of construction necessitate an accurate assessment of materials' rheological properties. It is well known that different rheometers for mortar and concrete deliver different results, as this was shown over 15 years ago in two measuring campaigns comparing concrete rheometers. Considering newly developed rheometers, including those to evaluate interface rheology and structural build-up at rest, as well as additional measurement procedures and data interpretation techniques, a new comparison campaign was carried out in 2018 at the Université d'Artois, in Bethune, France. This …


Editorial: Ultra-High Performance Concrete: Computation And Simulation Methods, Xinpeng Wang, Yitong Ma, Dongshuai Hou, Hongyan Ma, Yue Zhang Jan 2023

Editorial: Ultra-High Performance Concrete: Computation And Simulation Methods, Xinpeng Wang, Yitong Ma, Dongshuai Hou, Hongyan Ma, Yue Zhang

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

No abstract provided.


Analytical And Numerical Behavior Of Double Composite Steel Bridges, Emad M. Hassan, Hussam Mahmoud Jan 2023

Analytical And Numerical Behavior Of Double Composite Steel Bridges, Emad M. Hassan, Hussam Mahmoud

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Steel plate girders are considered a viable solution for the construction of medium- to long-span bridges. Despite their many advantages, various concerns have been raised regarding their maintenance due to the potential of fatigue crack initiation at welded details, accelerated corrosion in thin webs, and trapped debris around stiffeners. The use of rolled beams, on the other hand, can be very beneficial because they require much less maintenance. However, they are limited in size, which imposes constraints on their use to relatively short-span bridges due to deflection requirements. In this study, the behavior of the double composite superstructure system was …


Pumping Of Concrete: Understanding A Common Placement Method With Lots Of Challenges, Dimitri Feys, Geert De Schutter, Shirin Fataei, Nicos S. Martys, Viktor Mechtcherine Apr 2022

Pumping Of Concrete: Understanding A Common Placement Method With Lots Of Challenges, Dimitri Feys, Geert De Schutter, Shirin Fataei, Nicos S. Martys, Viktor Mechtcherine

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Several million cubic meters of concrete are pumped daily, as this technique permits fast concrete placement. Fundamental research has been performed and practical guidelines have been developed to increase the knowledge of concrete behavior in pipes. However, the pumping process and concrete behavior are not fully understood. This paper gives an overview of the current knowledge of concrete pumping. At first, the known physics governing the flow of concrete in pipes are introduced. A series of experimental techniques characterizing concrete flow behavior near a smooth wall to predict pressure-flow rate relationships are discussed, followed by recent developments in the use …


Coir Fiber Reinforced Concrete, Jose De La Serna, Moses Karakouzian Sep 2018

Coir Fiber Reinforced Concrete, Jose De La Serna, Moses Karakouzian

AANAPISI Poster Presentations

This poster exhibits the testing and research done on general Portland Cement Concrete with the addition of coir (coconut) fibers as reinforcement. Using the fundamental constituents of cement (water, cement, fine and coarse aggregate) and processed coir fiber, concrete specimens were batched to test for compressive and flexural strengths (per appropriate ASTM standards). Cylindrical and rectangular beam specimens were subjected to loadings until failure occurred. The capacity and modes of failures of the specimens were observed. It was determined that:

• The addition of processed coir fibers decreases the overall strength of general Portland Cement Concrete. • The tested concrete’s …


Pumping Of Fresh Concrete: Insights And Challenges, Geert De Schutter, Dimitri Feys Jan 2016

Pumping Of Fresh Concrete: Insights And Challenges, Geert De Schutter, Dimitri Feys

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Pumping of Fresh Concrete is of Utmost Importance for Concrete Practice. Required Pumping Pressures Are Typically Estimated based on Design Charts. However, with the Increased Use of Chemical Admixtures and the Development of More Flowable Concrete Mixtures, the Accuracy of Traditional Design Charts is Questioned. in Recent Years, Significant Progress Has Been Obtained in Understanding the Flow of the Material in the Pumping Pipe, Including the Behavior of the Lubrication Layer Near the Pipe Surface. in Comparison with Traditional Design Charts, This Results in More Reliable Pressure Predictions When Considering Very Fluid Concrete Types Like Self-Consolidating Concrete. Some Remaining Challenges …


Precast/Prestressed Concrete Truss-Girder For Roof Applications, Peter S. Samir May 2013

Precast/Prestressed Concrete Truss-Girder For Roof Applications, Peter S. Samir

Department of Construction Engineering and Management: Dissertations, Theses, and Student Research

Steel trusses are the most popular system for supporting long span roofs in commercial buildings, such as warehouses and aircraft hangars. There are several advantages of steel trusses, such as lightweight, ease of handling and erection, and geometric flexibility. However, they have some drawbacks, such as high material and maintenance cost, and low fire resistance. In this paper, a precast concrete truss is proposed as an alternative to steel trusses for spans up to 160 ft. without intermediate supports. The proposed design is easy to produce and has lower construction and maintenance costs than steel trusses. The proposed design is …


Behavior Of Segmental Precast Posttensioned Bridge Piers Under Lateral Loads, Haitham Dawood, Mohamed Elgawady, Joshua Hewes Sep 2012

Behavior Of Segmental Precast Posttensioned Bridge Piers Under Lateral Loads, Haitham Dawood, Mohamed Elgawady, Joshua Hewes

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Abstract a segmental precast posttensioned (SPPT) bridge pier is an economic recentering structural system. Understanding the seismic behavior of a SPPT system is an important step toward its application in high seismic zones. This paper presents a detailed three-dimensional finite-element (FE) model that was developed using the ABAQUS platform. a brief description and discussion of cyclic tests on eight large-scale SPPT piers is also presented. Four of the piers were constructed and tested to a predefined degree of damage. Then, these piers were retrofitted and retested. the FE models developed and presented in this paper predicted the backbone curves of …


High-Volume Fly Ash Concrete For Sustainable Construction, Jeffery S. Volz Jun 2012

High-Volume Fly Ash Concrete For Sustainable Construction, Jeffery S. Volz

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

With worldwide production of fly ash approaching 800 million tons annually, increasing the amount of fly ash used in concrete will remove more material from the solid waste stream and reduce the amount ending up in landfills. However, most specifications limit the amount of cement replacement with fly ash to less than 25 or 30%. Concrete with fly ash replacement levels of at least 50% - referred to as high-volume fly ash (HVFA) concrete - offers a potential green solution. the following study investigated the structural performance of HVFA concrete compared to conventional Portland-cement concrete. Specifically, the research examined both …


Accelerated Construction For Pedestrian Bridges: A Comparison Between High Strength Concrete (Hsc) And High-Strength Self Consolidating Concrete (Hs-Scc), John J. Myers, Kurt Bloch Sep 2011

Accelerated Construction For Pedestrian Bridges: A Comparison Between High Strength Concrete (Hsc) And High-Strength Self Consolidating Concrete (Hs-Scc), John J. Myers, Kurt Bloch

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

High-strength concrete (HSC) and glass fiber reinforced polymer (GFRP) bars are materials utilized in bridge construction to lower cost, reduce construction time, and increase service life of bridge structures. Recently, high-strength self-consolidating concrete (HS-SCC), a highly flowable concrete that does not require vibration, has been developed as a viable alternative to HSC for use in situations with congested steel or a need for rapid construction. Coupling HS-SCC with GFRP bars could create durable structures built rapidly. Several performance related issues remain to be investigated such as the behavior of prestress loss, shear, creep, shrinkage, thermal gradients, mechanical property development, time …


Evaluation Of Time Independent Rheological Models Applicable To Fresh Self-Compacting Concrete, Dimitri Feys, Ronny Verhoeven, Geert De Schutter Jan 2007

Evaluation Of Time Independent Rheological Models Applicable To Fresh Self-Compacting Concrete, Dimitri Feys, Ronny Verhoeven, Geert De Schutter

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Self-Compacting Concrete is a New Type of Concrete Which is More Liquid Compared to Traditional Concrete and Which Does Not Need Any Form of External Compaction. as a Result, This Type of Concrete is Suitable for a New Placing Technique: Pumping SCC from the Bottom in the Formwork and Letting It Rise in the Formwork Due to the Applied Pressure. in Order to Understand the Phenomena Occurring during Pumping Operations, the Rheological Properties of SCC Must Be Investigated and Controlled. Tests Have Been Performed with Two Different Rheometers, Which Are Described in This Paper. for the Tattersall MIk-II Rheometer, a …