Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Novel Peridynamic Models For Material Degradation And Mass Transport, Jiangming Zhao Nov 2021

Novel Peridynamic Models For Material Degradation And Mass Transport, Jiangming Zhao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fracture and corrosion are two major causes of structure failure. They can interact with each other, leading to faster material degradation. They are also under the influence of environmental conditions. The corrosion rate highly depends on the transportation rate of involving substances, while the fracture can be accelerated significantly due to fluid flow. These complex mechanisms involved in structure failure have troubled classical models for decades. The peridynamic (PD) theory introduced in 2000 has shown great potential in modeling such problems. In this work, we develop novel PD models for fracture, corrosion, mass transport, and viscous flow, which are building …


In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr Apr 2015

In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr

FIU Electronic Theses and Dissertations

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown …