Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Composite materials

Articles 1 - 30 of 41

Full-Text Articles in Engineering

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


Analysis Guidelines And Functionalities Of The Catia Native Fea Solver For Composite Materials, Mohamed Edrisy Feb 2022

Analysis Guidelines And Functionalities Of The Catia Native Fea Solver For Composite Materials, Mohamed Edrisy

Electronic Theses and Dissertations

The emergence of commercial FEA solvers was a significant breakthrough that boosted the accuracy and complexity of engineering design. While composite materials are special materials, their mechanical properties can be custom made by considering the needs and requirements of the design problem. Given the rapidly expanding global consumption of composite materials, access to FEA solvers capable of assigning these materials is an absolute requirement.The CATIA software is a platform for designing, analyzing, and manufacturing of parts. However, there is no meaningful documentation in the public domain exploring the finite element functionalities of CATIA software for composite materials. Isotropic materials are …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Data-Driven Damage Initiation Criteria For Carbon Fiber Reinforced Polymer Composites, Alexander Richard Post Nov 2021

Data-Driven Damage Initiation Criteria For Carbon Fiber Reinforced Polymer Composites, Alexander Richard Post

College of Computing and Digital Media Dissertations

Computational progressive failure analysis (PFA) is vital for the design, verification, and validation of carbon fiber reinforced polymer (CFRP) composites. However, the computational cost of PFA is usually high due to the complexity of the model. The damage initiation criterion is one of the essential components of a PFA code to determine the transition of a material’s state from pristine or microscopically damaged to macroscopically damaged. In this thesis, data-driven models are developed to determine the matrix damage initiation based on the Mohr-Coulomb model and Hashin model. For 2D plane stress states, the computational cost for determining damage initiation can …


Design, Analysis And Experimental Evaluation Of 3d Printed Variable Stiffness Structures, Rossana R. Fernandes Aug 2021

Design, Analysis And Experimental Evaluation Of 3d Printed Variable Stiffness Structures, Rossana R. Fernandes

Doctoral Dissertations and Master's Theses

The rapid progress of additive manufacturing (AM) introduces new opportunities but also new challenges for design and optimization to ensure manufacturability, testability and accurate representation/prediction of the models. The present dissertation builds a bridge between design, optimization, AM, testing and simulation of advanced optimized variable-stiffness structures. The first part offers an insight on the mechanical, viscoelastic and failure characteristics of AM continuous fiber composites. This understanding was used in the second part to investigate the feasibility of different topology and fiber-orientation optimization methods and the manufacturability of the resulting models. The study also assesses the effects of the manufacturing constraints …


Real-Time Material State Assessment Of Composites Using Artificial Intelligence And Its Challenges, Muthu Ram Prabhu Elenchezhian May 2021

Real-Time Material State Assessment Of Composites Using Artificial Intelligence And Its Challenges, Muthu Ram Prabhu Elenchezhian

Mechanical and Aerospace Engineering Dissertations

Over several decades of careful experimental investigation and exhaustive development of discrete damage analysis methods including integrated computational mechanics methods, our community knows a great deal about how discrete defects such as matrix cracks and defect growth (e.g. delamination) can be predicted in structural composites. For many practical situations controlled by laminated multiaxial composite structures, the loss of performance and “sudden death” end of life is controlled by defect coupling which becomes a precursor to fracture plane development. These interaction sequences are highly dependent on local details of manufacture, design configurations, and loading for a given application material and influenced …


Exploring The Impact Of Composite Material Fires And Associated Response Protocol On The Material Analysis During An Aircraft Accident Investigation, Flavio A. C. Mendonca, Natalie Zimmermann, Peng Hao Wang, Julius Keller Jan 2021

Exploring The Impact Of Composite Material Fires And Associated Response Protocol On The Material Analysis During An Aircraft Accident Investigation, Flavio A. C. Mendonca, Natalie Zimmermann, Peng Hao Wang, Julius Keller

Publications

Metals, beginning in the 1930s, have been frequently used as the material of choice for aircraft construction (Hallion, 1978; Jakab, 1999). Common metals used in the aviation industry range from alloyed and heat-treated aluminum to titanium, magnesium, and superalloys, the latter used in specialized applications (Hallion, 1978; Mouritz, 2012). Nevertheless, a shift in aircraft construction – specifically in terms of the materials used – began in the 1970s, as composite materials were introduced into commercial aircraft (Mouritz, 2012). Among others, the increased use of composited materials was – and still is – propelled by the ability to manufacture comparative lightweight …


Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer Dec 2020

Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer

Theses and Dissertations

Composite materials are strong, lightweight, and stiff making them desirable in aerospace applications. However, a practical issue arises with composites in that they behave unpredictably in bolted joints, where damage and cracks are often initiated. This research investigated a solution to correcting the problem with composite bolted joints. A novel hybrid composite material was developed, where thin stainless steel foils were placed between and in place of preimpregnated composite plies during the cure cycle to reinforce stress concentrations in bolted joints. This novel composite was compared to control samples experimentally in quasi-static monotonic loading in double shear configuration in 9-ply …


Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts Mar 2020

Modeling Hybrid Composites Using Tsai-Wu And Hashin Failure Criterion, Candice R. Roberts

Theses and Dissertations

Hybrid composites require further study and testing for future use in various fields. This study focuses on simulating a Hybrid Composite using IM7-977-3 laminae with steel foils in Abaqus under bolt loading by using Hashin and Tsai-Wu failure criterion. Initial simulations contain only the IM7-977-3 composite with cohesive layers. Foil samples were then tested for accurate material properties from which the simulations were then updated to include steel foils. The two models show that Tsai-Wu failure criterion, while great for anisotropic material in tension, does not prove accuracy around the hole of the composite material which is in compression. Hashin …


Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan Jan 2019

Interlaminar Damage Detection In Composite Materials, Hariharan Rangarajan

Williams Honors College, Honors Research Projects

Using ceramic matrix composites (CMCs) for high-temperature applications in jet engines increases durability and reduces weight and cooling requirements resulting in improved efficiency and fuel savings. Understanding, detecting, and monitoring different types of damage is essential to achieve optimal performance of CMC components. The Direct Current Potential Drop (DCPD) method is a non-destructive technique of estimating damage in composite materials.

DCPD technique works by measuring nodal potential differences when current is flown through the material. Direct current spreading in different woven and laminate composites is modeled to follow a ladder resistor network in which the nodal voltages decrease exponentially as …


Composite Plate Optimization With Structural And Manufacturing Constraints, Deepak Polaki May 2017

Composite Plate Optimization With Structural And Manufacturing Constraints, Deepak Polaki

Mechanical and Aerospace Engineering Theses

This is a design optimization study that focuses on the value of free size optimization technology on composite structures which incorporates realistic structural requirements and practical manufacturing limitations to achieve an iterative design with effective structural performance. To detail a study on such practical implementation, a sample structure is required. A rectangular composite laminate with a central hole cutout is considered for this study and is designed using finite elemental tools which includes compression, tension and shear loading conditions with load reactions at bolted joints and buckling stability. Free size optimization and size optimization are used in this study to …


Fem Analysis Of Composite Stringers For An Airplane Fuselage, Akashsingh Birendrasingh Thakur Dec 2016

Fem Analysis Of Composite Stringers For An Airplane Fuselage, Akashsingh Birendrasingh Thakur

Mechanical and Aerospace Engineering Theses

With the advent of technology, materials have advanced many folds; One such technical revelation has been Fiber-reinforced Composite Materials. Composite materials have two major advantages, among many others: Improved strength and stiffness, especially compared to other materials on a unit weight basis. For example, Composite materials have stiffness comparable to the stiffness of steel but with a strength decimal order higher and more than three times lighter. These advantages have led to new aircraft and spacecraft designs that are radical departures from past efforts based on conventional materials. The stringers serve to take up(along with the skin) the compression and …


Finite Element Modeling And Stress Distribution Of Unidirectional Composite Materials Under Transversal Loading, Pavan Agarwal Dec 2016

Finite Element Modeling And Stress Distribution Of Unidirectional Composite Materials Under Transversal Loading, Pavan Agarwal

Mechanical and Aerospace Engineering Theses

Micromechanics of Composites analyze stresses inside any heterogeneous material. These stresses can not only be used for calculation of effective stiffness or compliance, but also for predicting strength and failure modes for these materials. This thesis is devoted to the stress analysis of unidirectional composites by finite element method. The key distinction from other finite element method modeling of the unidirectional composite was that the load on the cell was not prescribed, but was to be calculated taking into account the influence of the closest neighbors of the cell. Transversal unidirectional tension/compression and transversally symmetrical biaxial tension/compression were analyzed. In …


Mechanical Properties And Fatigue Behavior Of Unitized Composite Airframe Structures At Elevated Temperature, Mohamed Noomen Sep 2016

Mechanical Properties And Fatigue Behavior Of Unitized Composite Airframe Structures At Elevated Temperature, Mohamed Noomen

Theses and Dissertations

The tension-tension fatigue behavior of a newly developed unitized composite material system was investigated. The unitized composite consisted of a polymer matrix composite (PMC) co-cured with a ceramic matrix composite (CMC). The PMC portion consisted of an NRPE high-temperature polyimide matrix reinforced with carbon fibers woven in an eight harness satin weave (8HSW). The CMC layer is a single-ply non-crimp 3D orthogonal weave composite consisting of ceramic matrix reinforced with glass fibers. In order to assess the performance and suitability of this composite for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions …


Finite Element Based Cross-Sectional Buckling Optimization For A Constant Area, Pinned-Pinned Composite Column, Anirudh Srinivas May 2016

Finite Element Based Cross-Sectional Buckling Optimization For A Constant Area, Pinned-Pinned Composite Column, Anirudh Srinivas

Mechanical and Aerospace Engineering Theses

In archery, dynamic buckling compromises the target accuracy of arrows. For both dynamic and quasi-static buckling, the buckling load depends on the cross-sectional area moment of inertia, which can be increased by modifying the cross-sectional shape of the arrow shaft. Arrows commercially available today are made up of composite materials and have a tubular circular cross-section. In this study an effort has been made to optimize the cross-sectional shape of the composite arrow shaft, using finite element based, quasi-static buckling analysis keeping the length and area of the cross-section constant. The composite column is pinned at both ends and is …


Creep Of Sylramic-Ibn Fiber Tows At Elevated Temperature In Air And In Silicic Acid-Saturated Steam, Kevin B. Sprinkle Jun 2015

Creep Of Sylramic-Ibn Fiber Tows At Elevated Temperature In Air And In Silicic Acid-Saturated Steam, Kevin B. Sprinkle

Theses and Dissertations

Stressed oxidation experiments on Sylramic-iBN fiber tows were performed to evaluate the novel fiber's mechanical performance, creep behavior, and creep mechanisms. This research effort investigated creep response of Sylramic-iBN fiber tows at elevated temperatures in both air and in silicic acid-saturated steam environments. Creep experiments were conducted at creep stresses ranging from 127 to 762 MPa at 400°C and 500°C in order to examine the mechanical behavior of the Sylramic-iBN fiber tows at temperatures below and above the melting point of boria (450°C). Sylramic-iBN fibers are known to have excellent creep resistance, better than most other non-oxide fibers and significantly …


Effect Of Prior Exposure At Elevated Temperatures On Tensile Properties And Stress-Strain Behavior Of Three Oxide/Oxide Ceramic Matrix Composites, Christopher J. Hull Mar 2015

Effect Of Prior Exposure At Elevated Temperatures On Tensile Properties And Stress-Strain Behavior Of Three Oxide/Oxide Ceramic Matrix Composites, Christopher J. Hull

Theses and Dissertations

Thermal stability of three oxide-oxide ceramic matrix composites was studied. The materials studied were NextelTM610/aluminosilicate (N610/AS), NextelTM720/aluminosilicate (N720/AS), and NextelTM720/Alumina (N720/A), commercially available oxide-oxide ceramic composites (COI Ceramics, San Diego, CA). The N610/AS composite consists of a porous aluminosilicate matrix reinforced with laminated woven alumina N610 fibers. The N720/AS and N720/A composites consist of a porous oxide matrix reinforced with laminated, woven mullite/alumina (NextelTM720) fibers. The matrix materials are aluminosilicate in N720/AS and alumina in N720/A. All three composites have no interface between the fibers and matrix, and rely on the porous …


Tension-Compression Fatigue Of An Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature In Air And Steam Environments, Richard L. Lanser Mar 2015

Tension-Compression Fatigue Of An Oxide/Oxide Ceramic Matrix Composite At Elevated Temperature In Air And Steam Environments, Richard L. Lanser

Theses and Dissertations

Tension-compression fatigue behavior of an oxide-oxide ceramic matrix composite was investigated at 1200°C in air and steam. The composite is comprised of an alumina matrix reinforced with Nextel 720 fibers woven in an eight harness satin weave. The composite relies on a porous matrix for damage tolerance. Compression and tension tests to failure were conducted to characterize basic mechanical properties. Tension-compression fatigue tests were performed at 1 Hz frequency with a ratio of minimum to maximum stress of -1. Maximum stresses ranged from 60-120 MPa. Fatigue run-out (defined as 105 cycles) was achieved in air at 80 MPa and in …


Characterization Of Waviness In Wind Turbine Blades Using Air Coupled Ultrasonics, Sunil Kishore Chakrapani, Vinay Dayal, David K. Hsu, Daniel J. Barnard, Andrew Gross Aug 2014

Characterization Of Waviness In Wind Turbine Blades Using Air Coupled Ultrasonics, Sunil Kishore Chakrapani, Vinay Dayal, David K. Hsu, Daniel J. Barnard, Andrew Gross

Sunil Kishore Chakrapani

Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air‐coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effect …


Ultrasonic Testing Of Adhesive Bonds Of Thick Composites With Applications To Wind Turbine Blades, Sunil Kishore Chakrapani, Vinay Dayal, Ryan Krafka, Aaron Eldal Aug 2014

Ultrasonic Testing Of Adhesive Bonds Of Thick Composites With Applications To Wind Turbine Blades, Sunil Kishore Chakrapani, Vinay Dayal, Ryan Krafka, Aaron Eldal

Sunil Kishore Chakrapani

This paper discusses the use of pulse echo based ultrasonic testing for the inspection of adhesive bonds between very thick composite plates (thickness greater than 30 mm). Large wind turbine blades use very thick composite plates for its main structural members, and the inspection of adhesive bond-line is very vital. A wide gamut of samples was created by changing the thickness of plate and the adhesive. The influence of experimental parameters such as frequency on measurement is studied in this paper. Two different frequencies are chosen, and the measurement error bars are determined experimentally. T-Ray measurements were used to verify …


Inspection Of Helicopter Rotor Blades With The Help Of Guided Waves And "Turning Modes": Experimental And Finite Element Analysis, Daniel J. Barnard, Sunil Kishore Chakrapani, Vinay Dayal Aug 2014

Inspection Of Helicopter Rotor Blades With The Help Of Guided Waves And "Turning Modes": Experimental And Finite Element Analysis, Daniel J. Barnard, Sunil Kishore Chakrapani, Vinay Dayal

Sunil Kishore Chakrapani

Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. …


Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell Oct 2013

Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell

Open Access Dissertations

The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner Oct 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


Enhancing Cnt-Composites With Raman Spectroscopy, Gregory J. Freihofer Jan 2011

Enhancing Cnt-Composites With Raman Spectroscopy, Gregory J. Freihofer

Electronic Theses and Dissertations

Carbon Nanotubes (CNTs) have been the subject of intense research for their potential to improve a variety of material properties when developed as nano-composites. This research aims to address the challenges that limit the ability to transfer the outstanding nano-scale properties of CNTs to bulk nano-composites through Raman characterization. These studies relate the vibrational modes to microstructural characterization of CNT composites including stress, interface behavior, and defects. The formulation of a new fitting procedure using the pseudo-Voigt function is presented and shown to minimize the uncertainty of characteristics within the Raman G and D doublet. Methods for optimization of manufacturing …


Part Count: Monolithic Part Effects On Manufacturing Labor Cost, An Aircraft Applied Model, Aaron M. Lemke Mar 2010

Part Count: Monolithic Part Effects On Manufacturing Labor Cost, An Aircraft Applied Model, Aaron M. Lemke

Theses and Dissertations

There are significantly different manufacturing processes and part counts associated with composites that are not currently addressed within the aircraft procurement and life cycle management processes in the Department of Defense (DoD). A series of affordability initiatives have culminated in significant evidence over the last decade to better quantify the impact of primarily composite structures in aircraft. An Air Force Research Laboratory program, Advanced Composite Cargo Aircraft (ACCA), provides substantial support for the impact of part size on life cycle cost for payload aircraft. This research evaluates select methods used and seeks to introduce modifications to the projected manufacturing hours …


Mechanical Properties Characterization And Business Case Analysis Of The Fiber Metal Laminate Glare-3 For Use As Secondary Aircraft Structure, Benjamin O. Elton Mar 2010

Mechanical Properties Characterization And Business Case Analysis Of The Fiber Metal Laminate Glare-3 For Use As Secondary Aircraft Structure, Benjamin O. Elton

Theses and Dissertations

This effort explored the mechanical characteristics and economic feasibility of using the fiber metal laminate, GLARE-3, as a secondary aircraft structure; specifically, the cargo floor of a C-130. The mechanical properties were determined through static four-point bending and tensile testing and dynamic impact testing. Aggregate behavior of the constituent materials was predicted using a model which consisted of Mass Volume Fraction (MVF) and Classical Laminated Plate Theory (CLPT) methods using known values for the constituents. Static testing was conducted on coupon-level specimens using standardized testing procedures. Static tensile tests were conducted on specimens with four different fiber orientations, 0°, 22.5°, …


Fatigue Behavior Of An Advanced Sic/Sic Composite At Elevated Temperature In Air And In Steam, Devon T. Christensen Dec 2009

Fatigue Behavior Of An Advanced Sic/Sic Composite At Elevated Temperature In Air And In Steam, Devon T. Christensen

Theses and Dissertations

The fatigue behavior of an advanced Silicon Carbide/Silicon Carbide (SiC/SiC) ceramic matrix composite (CMC) was investigated at 1200 ˚C in laboratory air and in steam environments. The composite consisted of a SiC matrix reinforced with Boron Nitride (BN) coated Hi-Nicalon fibers woven into eight-harness-satin (8HS) weave plies. Tensile stress-strain behavior and tensile properties were also evaluated at 1200 ˚C. Tension-tension fatigue tests were conducted in both laboratory air and in steam at 1200 ˚C at frequencies of 0.1 Hz, 1.0 Hz, and 10 Hz. The tension-tension fatigue tests had a ratio of minimum stress to maximum stress of R = …


Fatigue Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Javier Rodriguez Mar 2009

Fatigue Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Javier Rodriguez

Theses and Dissertations

Existing nanocomposite materials used for satellite applications don't offer the required conductivity and electromagnetic shielding protection, requiring metal shields in order to survive in space. The AFRL Materials and Manufacturing Directorate in conjunction with the private sector have developed a material that promises to blend the attributes of nanocomposites and metal materials. The M55J/RS3 material consists of carbon fibers combined with a polyisocyanate matrix, in which Nickel nanostrandsTM are added. The research effort investigated the changes in the EMI and ESD of the material after being subjected to cyclic loads. Four configurations of a symmetric layup with fibers oriented …


Hall Thruster Plume Diagnostics Utilizing Microwave Interferometry, Vipul Sharma Sep 2008

Hall Thruster Plume Diagnostics Utilizing Microwave Interferometry, Vipul Sharma

Theses and Dissertations

The fatigue behavior of two woven SiC-SiNC ceramic matrix composites (CMCs) was investigated at 1300 °C in laboratory air and in steam. The first composite (C1) consists of a PIP SiNC matrix reinforced with Sylramic (Syl) fibers woven in a five-harness satin weave fabric and coated with a proprietary dual-layer interface. The second composite (C2) consists of a modified PIP SiNC matrix reinforced with Sylramic-iBN (Syl-iBN) fibers woven in a five-harness satin weave fabric and coated with a proprietary dual-layer interface. The tensile stress-strain behavior was investigated and the tensile properties measured at 1300°C. Tension-tension fatigue behavior was studied for …


Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee Mar 2008

Analysis Of Multi-Layered Materials Under High Velocity Impact Using Cth, Jason K. Lee

Theses and Dissertations

Multi-layer armor containing ceramic and metallic layers has become more common in the past two decades. Typically, ceramics have high compressive strength which combined with their low density make them highly desirable for armor applications. This research effort numerically simulates high velocity impact of cylindrical projectiles on multi-layer metallic and ceramic targets of finite thickness. The impact of the projectile occurs normal to the surface of the target. The projectiles used are made of either S7 tool steel or tungsten. The targets consist of either rolled homogeneous armor, 4340 steel and boron carbide ceramic or rolled homogeneous armor and boron …