Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 107

Full-Text Articles in Engineering

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Development Of A Mission Design Tool For Computing Libration Point Formations Using Differential Corrections Initialized With A Genetic Algorithm, Donna Jennings Jan 2023

Development Of A Mission Design Tool For Computing Libration Point Formations Using Differential Corrections Initialized With A Genetic Algorithm, Donna Jennings

Doctoral Dissertations

"The growing interest in deep space spacecraft missions and distributed spacecraft formations has established the need for state-of-the-art advancements in the areas of relative dynamics and mission design. The focus of this research is to develop methods for identifying natural (i.e. ballistic) relative formation trajectories in the vicinity of the collinear libration points. A natural formation decreases the station keeping costs, lowering the consumption of spacecraft resources and extending mission lifetime. This research adapts both numerical and machine learning approaches to the problem of mission design. A genetic algorithm was first used to identify a multi-agent spacecraft formation in the …


Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky Dec 2022

Towards Reduced-Order Model Accelerated Optimization For Aerodynamic Design, Andrew L. Kaminsky

Doctoral Dissertations

The adoption of mathematically formal simulation-based optimization approaches within aerodynamic design depends upon a delicate balance of affordability and accessibility. Techniques are needed to accelerate the simulation-based optimization process, but they must remain approachable enough for the implementation time to not eliminate the cost savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point iterative solvers (e.g. such as those employed to solve primal equations, sensitivity equations, design equations, and their combination). The reduced-order model-based acceleration technique collects snapshots of early iteration (pre-convergent) solutions and residuals and then uses them to project …


Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord Dec 2022

Development And Implementation Of A Novel Resonantly Ionized Photoemission Thermometry Technique For One-Dimensional Measurements, Walker B. Mccord

Doctoral Dissertations

In this work, Resonantly Ionized Photoemission Thermometry (RIPT) is established and validated as a novel, non-intrusive, non-seeded, One-Dimensional (1D) line thermometry technique. The RIPT technique resonantly ionizes a target molecule via REMPI (Resonant Enhanced Multi-Photon Ionization) of selectively chosen rotational peaks within a resonant absorption band. Thus, efficiently ionizing and subsequently exciting local nitrogen molecules either by direct or indirect schemes. The excited nitrogen deexcites through photoemissions of the first negative band of N2+[molecular nitrogen], specifically near 390, 425, and 430nm [nanometers], that is then acquired as a 1D line signal. The signal strength at all transitions …


Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes Aug 2022

Predictive Capabilities Of Laminar-Turbulent Transition Models For Aerodynamics Applications, Jared Alexander Carnes

Doctoral Dissertations

Laminar-turbulent boundary-layer transition has a demonstrable impact on the performance of aerospace vehicles. The ability to accurately predict transition is integral to properly capturing relevant flow physics. Traditionally, computational fluid dynamics simulations are performed fully turbulent, meaning that laminar flow is neglected. This, however, can result in errant predictions of vehicle performance as quantities such as skin-friction drag may be overpredicted. Resultingly, development of Reynolds-averaged Navier-Stokes transition models has seen significant attention over the last decades in order to model transition and realize the performance improvements of laminar flow.

In this work, the behaviors of several different transition-prediction methods are …


Fully Kinetic Particle-In-Cell Simulations Of Plasma-Surface-Dust Interactions For Lunar Exploration, Jianxun Zhao Aug 2022

Fully Kinetic Particle-In-Cell Simulations Of Plasma-Surface-Dust Interactions For Lunar Exploration, Jianxun Zhao

Doctoral Dissertations

"The studies involving lunar surface explorations have drawn attentions in recent years. A better understanding of possible potential hazards to astronauts and electronic equipment has become a necessity for future lunar explorations. The lunar surface, lacking an atmosphere and global magnetic field therefore directly exposed to solar radiation and solar wind plasma, is electrically charged by the bombardment of solar wind plasma and emission/collection of photoelectrons. Additionally, lunar dust grains can also get charged and levitated from the surface under the influence of the electric field as well as gravity within the plasma sheath. Since the plasma sheath formed near …


Studies Of Multiphase Distribution And Flow In Bubble/ Slurry Bubble Columns With /Without Internals And Advanced Sustainable Construction Materials Using Sophisticated Measurement Techniques, Omar Farid Aug 2022

Studies Of Multiphase Distribution And Flow In Bubble/ Slurry Bubble Columns With /Without Internals And Advanced Sustainable Construction Materials Using Sophisticated Measurement Techniques, Omar Farid

Doctoral Dissertations

"Bubble/slurry bubble columns have been widely studied and employed as multiphase flow reactors with and without vertical heat-exchanging tubes. In order to understand more deeply the effect of the dense internals on the hydrodynamics of bubble/slurry bubble column, systematic experiments were performed to visualize and quantify using the radioactive particle tracking (RPT) technique. A new methodology for implementing the radioactive particle tracking (RPT) technique has been developed to investigate the effect of the dense internals on the hydrodynamics of the bubble/slurry column reactor. Monte Carlo N-Particle (MCNP) simulation has been implemented to simulate the system to generate a large number …


Nuclear Thermal Rocket Engine Control Autonomy Via Embedded Decision, David Sikorski May 2022

Nuclear Thermal Rocket Engine Control Autonomy Via Embedded Decision, David Sikorski

Doctoral Dissertations

This doctoral dissertation presents an investigation of embedded decision capabilities as a means for developing nuclear reactor autonomous control. Nuclear thermal propulsion (NTP) is identified as a high priority technology for development, and is the focus of this research. First, a background investigation is presented on the state of the art in nuclear thermal rocket (NTR) engine control and modeling practices, resulting in the development of a low order NTR engine dynamic model based on the literature. The engine model was used to perform the following investigation, and is intended to serve as a research platform for the future development …


Experimental Investigation Of Supersonic Jets Using Optical Diagnostics, Theron James Price May 2022

Experimental Investigation Of Supersonic Jets Using Optical Diagnostics, Theron James Price

Doctoral Dissertations

The complexity of many fluid flows and phenomena is a well-known characteristic driven primarily by turbulence, which has been a focal point of study for decades. Most engineering applications in fluids will encounter turbulence, and hence the need to understand how turbulence might influence the problem at hand is omnipresent. In many turbulent flows, there are large-scale coherent structures which directly influence macro-scale processes of engineering relevance, such as noise production. Over decades of study, it has been demonstrated that similar structures are often observed across many flowfields, despite differences in characteristic parameters, and this has led to the pursuit …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko Jan 2022

Theoretical And Experimental Application Of Neural Networks In Spaceflight Control Systems, Pavel Galchenko

Doctoral Dissertations

“Spaceflight systems can enable advanced mission concepts that can help expand our understanding of the universe. To achieve the objectives of these missions, spaceflight systems typically leverage guidance and control systems to maintain some desired path and/or orientation of their scientific instrumentation. A deep understanding of the natural dynamics of the environment in which these spaceflight systems operate is required to design control systems capable of achieving the desired scientific objectives. However, mitigating strategies are critically important when these dynamics are unknown or poorly understood and/or modelled. This research introduces two neural network methodologies to control the translation and rotation …


The Utilization And Loss Of Available Energy In Aerospace Systems, Mohammad Abbas Jan 2022

The Utilization And Loss Of Available Energy In Aerospace Systems, Mohammad Abbas

Doctoral Dissertations

“Theoretical principles and analytical methodology for the control volume-based energy availability methodology for aerospace vehicles are developed; applications are made to jet-propelled and rocket-propelled vehicles as well as to stand-alone engine systems. Energy availability utilization characteristics of a modeled turbojet engine are studied across a wide range of operating conditions of throttle setting, flight altitude, and flight Mach number. The method is also extended to consider jet-powered vehicles. Fundamental principles regarding entropy generation and energy availability are developed, including directly linking entropy generation and maximum range and endurance of a powered aircraft. Theory and application of the energy utilization methodology …


Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas Oct 2021

Simulating The Effects Of Floating Platforms, Tilted Rotors, And Breaking Waves For Offshore Wind Turbines, Hannah Johlas

Doctoral Dissertations

Offshore wind energy is a rapidly expanding source of renewable energy worldwide, but many aspects of offshore wind turbine behavior are still poorly understood and are not accurately captured by low-cost engineering models used in the design process. To help improve these models, computational fluid dynamics (CFD) can provide valuable insight into the complex fluid flows that affect offshore wind turbine power generation and structural loads. This research uses CFD simulations to examine three main topics important to future offshore wind development: how breaking waves affect structural loads for fixed-bottom wind turbines; how platform motions affect power generation, wake characteristics, …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Information-Based Methods And Models For Particle Flow Filtering, Kari Catherine Ward Jan 2021

Information-Based Methods And Models For Particle Flow Filtering, Kari Catherine Ward

Doctoral Dissertations

"Recursive estimation methodologies, such as Kalman and Bayesian filters, typically require models of some kind to perform the estimation. This filtering process seeks to improve knowledge surrounding some quantities of interest, or states, over time by incorporation of imperfect observations. The models required pertain to the state dynamics, sensors from which measurements are obtained, and probabilistic models of the underlying stochastic processes. In addition to any number of necessary models, real-world application of a filter is normally accompanied by at least one, if not several, techniques to promote better performance. These methods vary in purpose from expanding the kinds of …


Analysis Of Turbulence Model Uncertainty For Canonical Flow Problems Including Shock Wave Boundary Layer Interaction Simulations, Aaron James Erb Jan 2021

Analysis Of Turbulence Model Uncertainty For Canonical Flow Problems Including Shock Wave Boundary Layer Interaction Simulations, Aaron James Erb

Doctoral Dissertations

"The purpose of this research is to present results of an uncertainty and sensitivity analysis study of commonly used turbulence models in Reynolds-Averaged Navier-Stokes (RANS) codes due to the epistemic uncertainty in closure coefficients for a set of turbulence model validation cases that represent the structure of several canonical flow problems. The study focuses on the analysis of a 2D zero pressure gradient flat plate, a 2D wall mounted hump, and an axisymmetric shock wave boundary layer interaction, all of which are well documented on the NASA Langley Research Center Turbulence Modeling Resource website. The Spalart-Allmaras (SA), the Wilcox (2006) …


Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki Jan 2021

Theoretical Study Of Magnetic Particles In A Shear Flow Subjected To A Uniform Magnetic Field, Christopher A. Sobecki

Doctoral Dissertations

"Magnetic manipulation of non-spherical magnetic microparticles is important for applications in shape-based and magnetic-based separations such as waste management, disease diagnostics, drug delivery, and mining. Manipulations of magnetic microparticles also include chain formation to assemble compositions for electronics, drug loading designs, and magnetorheological fluids for smart armor, hydraulic brakes, and dampers. In microfluidic devices, separation-formation-effectiveness depends on the shape of the channel, the shear rate, and the magnetic field strength and direction.

Particle separation and chain formation involved highly complex and computational expense-demanding studies in microfluidic devices, magnetic fields, and particle- particle/wall interactions. This research took complex experimental studies and …


Multi-Fidelity Modeling For Aerothermal Analysis Of Deployable Planetary Entry Technologies, Mario J. Santos Jan 2021

Multi-Fidelity Modeling For Aerothermal Analysis Of Deployable Planetary Entry Technologies, Mario J. Santos

Doctoral Dissertations

“NASA is developing deployable entry technologies in the form of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and the Adaptable Deployable Entry Technology (ADEPT) vehicles to support human exploration of Mars. To ensure that these technologies are reliable under uncertain entry conditions and extreme aerothermal environments, uncertainty quantification must be integrated into the design process which typically requires large number of high-fidelity computational fluid dynamics (CFD) simulations with prohibitively high computational cost. To address this challenge, construction of multi-fidelity aerothermal response predictions which combine low-fidelity correlations with fewer high-fidelity CFD models in a way that produces highly accurate surrogates with reduced …


Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan Jan 2021

Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan

Doctoral Dissertations

Digital microfluidics in combination with emulsion microfluidics are crucial building blocks of droplet-based microfluidics, which are prevalent in a wide variety of industrial and biomedical applications, including polymer processing, food production, drug delivery, inkjet printing, and cell-based assays. Therefore, understanding the dynamics and interactions of droplets as well as the interactions between the droplets and solid surfaces are of great importance in order to improve the performance or product in these applications.

Recently, several studies in the literature have demonstrated the potential of magnetic fields in controlling the behavior of droplets in microscale; however, the fundamental mechanism behind the interesting …


Novel Piezo Actuators For Surface Cleaning, Yezad H. Anklesaria Jan 2021

Novel Piezo Actuators For Surface Cleaning, Yezad H. Anklesaria

Doctoral Dissertations

"Optical cameras are becoming increasingly common and are used in a variety of applications. With recent progress and transition toward more autonomous systems, the usage of optical systems will be common and widespread. Applications of the optical systems range from autonomous vehicles, home security systems, aviation, extraterrestrial vehicles, spacecraft, and satellites. Imaging systems are used in decision-making in many of these applications. Fouling of the field of view of the imaging system can impede the decision process. An active autonomous cleaning method for the optical surface of the optical systems reliably would be advantageous. The research work focuses on developing …


Quantum Inspired Concepts In Decision Making, Qizi Zhang Jan 2021

Quantum Inspired Concepts In Decision Making, Qizi Zhang

Doctoral Dissertations

"In this study, several new applications of quantum-inspired techniques are presented to advance the state of the art in decision making. In the first part, a quantum boost scheme for multiple-model filters based on extended Grover’s algorithm is presented for fault detection and parameter estimation. The quantum boost scheme accelerates the convergence of the posterior probabilities in the multiple-model filter. Stability proofs for the quantum boost scheme is presented and its performance is analyzed using benchmark examples. In the second part, the scope of application is extended to modeling human decision making. The open quantum system cognition model is applied …


Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp Jan 2021

Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp

Doctoral Dissertations

"Extreme winds impacting civil structures lead to death and destruction in all regions of the world. Specifically, tornadoes and hurricanes impact communities with severe devastation. On average, 1200 tornadoes occur in the United States every year. Tornadoes occur predominantly in the Central and Southeastern United States, accounting for an annual $1 billion in economic losses, 1500 injuries, and 90 deaths. The Joplin, MO Tornado in 2011 killed 161 people, injured more than 1000, destroyed more than 8000 structures, and caused $2.8 billion of property loss. Hurricanes occur predominantly on the United States East coast regions and along the coast of …


Cooperative Navigation Of Small Satellites In The Deep Space Environment, Jill Christine Davis Jan 2021

Cooperative Navigation Of Small Satellites In The Deep Space Environment, Jill Christine Davis

Doctoral Dissertations

“The continued development of small satellites (SmallSats) has made them an increasingly viable mission alternative to traditional monolithic spacecraft. Constellations, swarms, and formations of these small spacecraft have the potential to fill unique gaps in the space systems architecture, while reducing overall mission costs and increasing mission redundancy. Cooperative navigation between spacecraft within swarms and formations is critical to mission success, but poses many challenges for SmallSats due to their size, mass, power, and computing constraints. While Earth orbiting missions can rely on GNSS data for high-accuracy inertial and relative navigation, deep space missions require new navigation techniques. In this …


Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner Dec 2020

Considerations For The Design Optimization Of Floating Offshore Wind Turbine Blades, Evan M. Gaertner

Doctoral Dissertations

Floating offshore wind turbines are an immature technology with relatively high costs and risk associated with deployment. Of the few floating wind turbine prototypes and demonstration projects deployed in real metocean conditions, all have used standard turbines design for onshore or offshore fixed bottom conditions. This neglects the unique unsteady aerodynamics brought on by floating support structure motion. While the floating platform has been designed and optimized for a given rotor, the global system is suboptimal due to the rotor operating in conditions outside of which it was design for. If the potential offered by floating wind turbines is to …


Discontinuous Recycled And Repurposed Carbon Fiber Reinforced Thermoplastic Organosheet Composites, Philip R. Barnett Dec 2020

Discontinuous Recycled And Repurposed Carbon Fiber Reinforced Thermoplastic Organosheet Composites, Philip R. Barnett

Doctoral Dissertations

There is a significant need for low cost, high volume composites in the automotive industry to aid in vehicle lightweighting and safety. The current state-of-the-art severely compromises the mechanical properties of composites to achieve cost and cycle time goals. In this dissertation, a novel composite format, termed discontinuous carbon fiber organosheets, using recycled and repurposed carbon fibers in a thermoplastic matrix is developed and studied. Unlike traditional composites, the long fiber length and rapid processing time yield mechanical properties and cycle times competitive with automotive metals.

Several studies were performed to characterize this new material format. First, samples were manufactured …


Characterizing The Unsteady Dynamics Of Cylinder-Induced Shock Wave/Transitional Boundary Layer Interactions Using Non-Intrusive Diagnostics, Elizabeth Lara Lash Aug 2020

Characterizing The Unsteady Dynamics Of Cylinder-Induced Shock Wave/Transitional Boundary Layer Interactions Using Non-Intrusive Diagnostics, Elizabeth Lara Lash

Doctoral Dissertations

The objectives of this study were to provide time-resolved (1) characterizations of shock wave/transitional boundary layer interactions using schlieren flow visualization, and (2) correlations of unsteady shock motion to boundary layer features. The characteristics of cylinder-induced shock wave/transitional boundary layer interactions in a Mach 2 freestream flowfield were studied experimentally. The Reynolds number in the Mach 2 facility was 30,000,000 m-1. Incoming boundary layers were in transitional and fully turbulent states. Characterizing the shock wave motion was based on tracking the position of the shock wave on the model surface in schlieren images. The motion of the shock waves revealed …


The Effect Of Oxygen On Properties Of Zirconium Metal, Jie Zhao Mar 2020

The Effect Of Oxygen On Properties Of Zirconium Metal, Jie Zhao

Doctoral Dissertations

The influence of oxygen on the thermophysical properties of zirconium has been investigated using MSL-EML (Material Science Laboratory Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations was subjected to multiple melt cycles during which the thermophysical properties, such as density, viscosity and surface tension, have been measured at various undercooled and superheated temperatures. Also, there are melt cycles for verifying the solidification mechanism. Similar samples were found to show anomalous nucleation of the solid for certain ranges …