Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

PLdB

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon Dec 2022

A Theoretical Trade-Off Between Wave Drag And Sonic Boom Loudness Due To Equivalent Area Changes On A Supersonic Body, Nolan L. Dixon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The NASA University Leadership Initiative (ULI) titled ”Adaptive Aerostructures for Revolutionary Civil Supersonic Transportation” consists of a team of university and industry partners studying the feasibility of reducing the perceived loudness of the sonic boom by introducing an adaptive geometry at localized regions of an aircraft’s outer-mold line. The Utah State University AeroLab is a member of this ULI team and has produced low-fidelity tools to predict the aerodynamic and boom loudness effects from localized changes to the geometry.

Such changes to the geometry affect both the sonic boom loudness and wave drag; however, the precise relationship between boom loudness …


Sonic Boom Loudness Reduction Through Localized Supersonic Aircraft Equivalent-Area Changes, Troy A. Abraham May 2021

Sonic Boom Loudness Reduction Through Localized Supersonic Aircraft Equivalent-Area Changes, Troy A. Abraham

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The NASA University Leadership Initiative (ULI) titled “Adaptive Aerostructures for Revolutionary Civil Supersonic Transportation” looks to study the feasibility of distributed structural adaptivity on a supersonic aircraft for maintaining acceptable en-route sonic boom loudness during overland flight. The ULI includes a team of industry and university partners that are working together to develop and implement the systems necessary to accomplish this goal.

The Utah State University Aerolab is a member of this ULI team and has been tasked with developing and using low-fidelity supersonic aerodynamic and sonic boom predictions tools to rapidly study the effects of localized geometry changes on …