Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Autonomous Trajectory Planning For Satellite Rpo And Safety Of Flight Using Convex Optimization, Nicholas G. Ortolano Dec 2018

Autonomous Trajectory Planning For Satellite Rpo And Safety Of Flight Using Convex Optimization, Nicholas G. Ortolano

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Optimal trajectory planning methods that implement convex optimization techniques are applied to the area of satellite rendezvous and proximity operations. This involves the development of linearized relative orbital motion dynamics and constraints for two satellites, where one maintains a near-circular reference orbit. The result is formulated as a convex optimization problem, where the objective is to minimize the amount of fuel required to transfer from a given initial condition to the desired final conditions. A traditional rendezvous and proximity operations scenario is analyzed, which includes examples of initial approach, inspection, final approach, and docking trajectories. This scenario may include trajectory …


Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain Dec 2018

Additively-Manufactured Hybrid Rocket Consumable Structure For Cubesat Propulsion, Britany L. Chamberlain

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Three-dimensional, additive printing has emerged as an exciting new technology for the design and manufacture of small spacecraft systems. Using 3-D printed thermoplastic materials, hybrid rocket fuel grains can be printed with nearly any cross-sectional shape, and embedded cavities are easily achieved. Applying this technology to print fuel materials directly into a CubeSat frame results in an efficient, cost-effective alternative to existing CubeSat propulsion systems. Different 3-D printed materials and geometries were evaluated for their performance as propellants and as structural elements. Prototype "thrust columns" with embedded fuel ports were printed from a combination of acrylonitrile utadiene styrene (ABS) and …


Experimental Investigation Of A Green Hybrid Thruster Using A Moderately Enriched Compressed Air As The Oxidizer, Marc Anthony Bulcher Dec 2018

Experimental Investigation Of A Green Hybrid Thruster Using A Moderately Enriched Compressed Air As The Oxidizer, Marc Anthony Bulcher

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A hybrid rocket is a propulsion system that uses propellants in two different phases, typically a solid fuel inside the combustion chamber and a separate gaseous or liquid oxidizer stored in a tank. Hybrid rockets are an area of research interest because of their low explosive risk, inexpensive components, and high degree of reliability. In the Propulsion Research Laboratory at Utah State University, pure oxygen is among the top choice for hybrid rocket oxidizers due to its low cost and ease of storage. When paired with a solid fuel known as ABS (acrylonitrile butadiene styrene) plastic, specific impulse values exceed …


Plume Contamination Measurements Of An Additively-Printed Gox/Abs Hybrid Thruster, David A. Brewer Aug 2018

Plume Contamination Measurements Of An Additively-Printed Gox/Abs Hybrid Thruster, David A. Brewer

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis examines the impact of the physical contamination on optical surfaces of spacecraft by an ABS/GOX thruster. Plume contamination presents a significant operational hazard for spacecraft solar arrays and thermal control surfaces can lead to decreased power production and increased spacecraft temperatures. Historically, due to the lack of a reliable, on-demand, and multiple-use ignition methodology, hybrid rockets have never been previously considered for in-space propulsion. Recent advancements in hybrid rocket technologies, have made hybrid systems feasible for in space propulsion. However, prior to this study no research had ever been performed with regard to plume contamination effects due to …


Thrust Augmented Nozzle For A Hybrid Rocket With A Helical Fuel Port, Joel H. Marshall May 2018

Thrust Augmented Nozzle For A Hybrid Rocket With A Helical Fuel Port, Joel H. Marshall

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the …