Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind forces …


Development, Training, Education, And Implementation Of Low-Cost Sensing Technologies For Bridge Structural Health Monitoring (Shm), Fernando Moreu, Chris Lippitt, Dilendra Maharjan, Marlon Aguero, Roya Nasimi Nov 2018

Development, Training, Education, And Implementation Of Low-Cost Sensing Technologies For Bridge Structural Health Monitoring (Shm), Fernando Moreu, Chris Lippitt, Dilendra Maharjan, Marlon Aguero, Roya Nasimi

Publications

Transportation infrastructure needs continuous monitoring. However, traditional inspections cost money and are conducted visually. New technologies for bridge monitoring are expensive and complex. This project involved developing cost-effective sensor technologies that can be applied towards the maintenance of railroad bridges by recording reference-free transverse displacement. More specifically, this project developed new applications of new technologies (Arduino, wireless smart sensors, drones, Hololens) and promoted workforce development with an emphasis on outreach of high-school students. This project was carried out in three main phases: (1) development and validation of technologies, (2) education and outreach to students, and (3) outreach to industry consisting …


Liquid Jet Penetration And Breakup In A Free Supersonic Gas Jet, Hansen Jones Oct 2018

Liquid Jet Penetration And Breakup In A Free Supersonic Gas Jet, Hansen Jones

LSU Master's Theses

In the testing of today’s rocket engines, both on large scale vertical test stands and smaller subscale horizontal component testing stands, it is extremely important to be able to accurately quantify and mitigate the thermal and acoustic loads the engines will generate on test stand infrastructure. Due to the large number of parameters that must be considered for many cases, development of a multi-phase computational code is under way to properly analyze and design water spray cooling systems used at NASA’s Stennis Space Center (SSC) and across other NASA centers. As such, a small-scale experiment has been conducted at Louisiana …


Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot Oct 2018

Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot

LSU Master's Theses

Laryngotracheal stenosis (LTS) is a health condition in which an obstruction in the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation in infants, LTS often requires corrective surgery. Currently, clinical methods of assessing the blockage region are simplistic and subjective, and it is challenging to determine the most effective surgical strategy for any given patient. In the present work, a comprehensive methodology is proposed for characterizing the stenosis region both in terms of its anatomical parameters and its corresponding aerodynamic properties. The combination of computational fluid dynamics (CFD) …


Design And Performance Estimation Of A Low-Reynolds Number Unmanned Aircraft System, Sean Lauderdale King Jul 2018

Design And Performance Estimation Of A Low-Reynolds Number Unmanned Aircraft System, Sean Lauderdale King

LSU Master's Theses

The purpose of this thesis is to conceptually design a fixed-wing unmanned aircraft systems (UAS) with a higher flight-time and top stable speed than comparable systems. The vehicle adheres to specifications derived from the client, the market, and the Federal Aviation Administration (FAA). To broadly meet these requirements, the vehicle must fly for a minimum of three hours, return to the original flight path quickly if perturbed, and must be hand-launched. The vehicle designed must also have a large potential center of gravity movement to allow for customization of the planform and client customization.

An iterative design process was used …