Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto May 2023

Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto

Electronic Theses & Dissertations

Carbon Fiber Reinforced Polymer composites (CFRP) have garnered increasing interest in recent years especially in the aerospace and automobile industries where they are gradually replacing metals as structural materials. This is owing to their light weight, high strength, high modulus, and excellent strength-to-weight ratio. Polymers are typically used as thermosetting resins in these composites. However, the synthesis of polymers currently is conducted via petrochemical processes which leads to adverse effects on the environment. To this end, in this work a biobased Polyurethane (PU) was used as a thermosetting resin in a CFRP. The biobased PU was synthesized by the reaction …


Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla May 2023

Fusion Bonding Behavior Of 3d Printed Pa6/Cf Composites Via Post Fabrication Compaction, Gonzalo Fernandez Mediavilla

Mechanical & Aerospace Engineering Theses & Dissertations

Additive manufacturing (AM) is becoming a robust production technology for aerospace, healthcare, and construction industries among others. Fused Deposition Modelling (FDM) is one of the methods most used to 3D print products. FDM has limitation due to interlayer adhesion and restriction imposed by the printing direction. Specially with AM composites, as reinforced nylon PA6 with short fibers, parts show more strength along the direction of the filament due to the alignment of the carbon fibers, but weaker in other directions. The proposed method to solve this issue is to print parts separately and join them together by fusion bonding. PA6/CF …


Surface Preparation Study, Ryan Ferguson Jan 2023

Surface Preparation Study, Ryan Ferguson

Williams Honors College, Honors Research Projects

This work explores a custom air atmospheric pressure plasma treatment (APPT) machine’s effectiveness in cleaning and chemically activating a CFRP surface. It is explore by implementing water contact angle (WCA) measurements, water-break free (WBF) testing, and adhesive tubular lap-joint (TLJ) tensile testing. An 8x3 test matrix of different machine parameters is defined with the bounding conditions being the machine’s capabilities and industry standard recommendations. Each configuration of the test matrix is explored after treatment at multiple time intervals up to 2 weeks afterwards to gain insight into the outlife of the treatments with the intention of adhesively bonding to the …