Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett Dec 2019

Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett

UNLV Theses, Dissertations, Professional Papers, and Capstones

Supercritical carbon dioxide (sCO2) is currently being studied as the working fluid in power producing Brayton cycles due to its excellent physical and thermodynamic properties, especially near the critical point. Printed circuit heat exchangers (PCHEs) are being considered for use as condensers and recuperators for this purpose due to their high strength and compact designs. Many experimental and numerical studies are being conducted to characterize and optimize sCO2 PCHE operation and develop correlations to describe their thermal-hydraulic performance. Additionally, a few experimental and numerical structural assessments of these PCHEs have been conducted, but all have been somewhat limited due to …


Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill May 2019

Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Navier-Stokes equations (NSE) are an essential set of partial differential equations for governing the motion of fluids. In this paper, we will study the NSE for an incompressible flow, one which density ρ = ρ0 is constant.

First, we will present the derivation of the NSE and discuss solutions and boundary conditions for the equations. We will then discuss the Reynolds number, a dimensionless number that is important in the observations of fluid flow patterns. We will study the NSE at various Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.

We will …


Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar May 2019

Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar

UNLV Theses, Dissertations, Professional Papers, and Capstones

Accurately extracting a meaningful transmissivity, a target value within one order of magnitude of field estimates, in numerical models poses a significant challenge when modeling complex groundwater systems. Aquifer transmissivity is directly proportional to the aquifer thickness and the estimated aquifer hydraulic conductivity. In complex geologic conditions (especially in fractured systems) with multiple heterogeneous and anisotropic hydrogeologic units, transmissivity can vary over several orders of magnitude.

To extract a meaningful value of transmissivity from a numerical model, a simple five-layer MODFLOW model was constructed. Each layer in the model was assigned a fixed hydraulic conductivity and thickness. The model simulates …


Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan May 2019

Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Reactor fuel rod bundles serve as the primary heat source in light water reactors (LWRs), commonly found in the aforementioned PWR plants. The fuel rod bundles’ structure consists of a collection of fuel rods put into a parallel grid configuration. The bundles also include fuel rod spacers, which hold the fuel rods in place, in accordance with the grid. Repeating structures of the fuel bundles create the meta-structure in the reactor. In other words, the grid configuration repeats until it fills the entire space of the reactor. This results in reactor fuel rods suspended in the working fluid domain, oriented …


Adaptive And Supertwisting Adaptive Spacecraft Orbit Control Around Asteroids, Keum W. Lee, Sahjendra N. Singh Apr 2019

Adaptive And Supertwisting Adaptive Spacecraft Orbit Control Around Asteroids, Keum W. Lee, Sahjendra N. Singh

Electrical & Computer Engineering Faculty Research

This paper addresses the development of control systems for the orbit control of spacecraft around irregularly shaped rotating asteroids with uncertain parameters. The objective is to steer the spacecraft along prescribed orbits. First, a nonlinear adaptive law for orbit control was designed. This was followed by the design of a supertwisting adaptive (STWA) control system. In the closed-loop system, which includes the adaptive law or the STWA law, all the signals remain bounded, and the trajectory tracking error asymptotically converges to zero for any initial condition. Finally, under the assumption of boundedness of the derivative of the uncertain functions of …