Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

Missouri University of Science and Technology

2010

Keyword
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Engineering

A High-Quality Mach-Zehnder Interferometer Fiber Sensor By Femtosecond Laser One-Step Processing, Longjiang Zhao, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, Hai-Lung Tsai Dec 2010

A High-Quality Mach-Zehnder Interferometer Fiber Sensor By Femtosecond Laser One-Step Processing, Longjiang Zhao, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is …


A Comparative Verification Of Forecasts From Two Operational Solar Wind Models, Donald C. Norquist, Warner C. Meeks Dec 2010

A Comparative Verification Of Forecasts From Two Operational Solar Wind Models, Donald C. Norquist, Warner C. Meeks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The solar wind (SW) and interplanetary magnetic field (IMF) have a significant influence on the near‐Earth space environment. In this study we evaluate and compare forecasts from two models that predict SW and IMF conditions: the Hakamada‐Akasofu‐Fry (HAF) version 2, operational at the Air Force Weather Agency, and Wang‐Sheeley‐Arge (WSA) version 1.6, executed routinely at the Space Weather Prediction Center. SW speed (Vsw) and IMF polarity (Bpol) forecasts at L1 were compared with Wind and Advanced Composition Explorer satellite observations. Verification statistics were computed by study year and forecast day. Results revealed that both models’ mean Vsw are …


Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder Sep 2010

Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Point-Collocation Non-intrusive Polynomial Chaos (NIPC) method has been applied to a stochastic synthetic jet actuator problem used as one of the test cases in the CFDVAL2004 workshop to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic jet actuators. The test case included the simulation of an actuator generating a synthetic jet issued into quiescent air. The Point-Collocation NIPC method is used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field due to the uniformly distributed uncertainty introduced in the amplitude and frequency of …


Uncertainty Quantification Integrated To The Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder Jul 2010

Uncertainty Quantification Integrated To The Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Point Collocation Non-Intrusive Polynomial Chaos (NIPC) method has been applied to two stochastic synthetic jet actuator problems used as test cases in the CFDVAL2004 workshop to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic jet actuators. In Case1 where the synthetic jet is issued into quiescent air, the NIPC method is used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field, due to the uniformly distributed uncertainty introduced in the amplitude and frequency of the oscillation of the piezo-electric membrane. Fifth order NIPC …


Prediction Of The Transport Properties Of A Polyatomic Gas, Zhi Liang, Hai-Lung Tsai Jun 2010

Prediction Of The Transport Properties Of A Polyatomic Gas, Zhi Liang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An Ab Initio Molecular Potential Model is Employed in This Paper to Show its Excellent Predictability for the Transport Properties of a Polyatomic Gas from Molecular Dynamics Simulations. a Quantum Mechanical Treatment of Molecular Vibrational Energies is Included in the Green and Kubo Integral Formulas for the Calculation of the Thermal Conductivity by the Metropolis Monte Carlo Method. using CO2 Gas as an Example, the Fluid Transport Properties in the Temperature Range of 300-1000 K Are Calculated Without using Any Experimental Data. the Accuracy of the Calculated Transport Properties is Significantly Improved by the Present Model, Especially for the Thermal …


Measurement Of Refractive Index Change Of Optical Fiber Core Induced By Femtosecond Laser Scanning, Y. Han, T. Wei, Hai-Lung Tsai, Hai Xiao Jun 2010

Measurement Of Refractive Index Change Of Optical Fiber Core Induced By Femtosecond Laser Scanning, Y. Han, T. Wei, Hai-Lung Tsai, Hai Xiao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We report a new method to measure the refractive index change in optical fiber core induced by femtosecond (fs) laser exposure. An in-line Fabry-Perot interferometer, serving as the measurement platform, is constructed on a commercial single-mode optical fiber by onestep femtosecond (fs) laser fabrication. A positive refractive index change is observed and measured accurately as the laser pulse energy surpasses the ablation threshold.


Observations Of Temporal Group Delays In Slow-Light Multiple Coupled Photonic Crystal Cavities, S. Kocaman, Xiaodong Yang, J. F. Mcmillan, M. B. Yu, D. L. Kwong, C. W. Wong Jun 2010

Observations Of Temporal Group Delays In Slow-Light Multiple Coupled Photonic Crystal Cavities, S. Kocaman, Xiaodong Yang, J. F. Mcmillan, M. B. Yu, D. L. Kwong, C. W. Wong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We demonstrate temporal group delays in coherently coupled high- Q multicavity photonic crystals, in an all-optical analog to electromagnetically induced transparency. We report deterministic control of the group delay up to 4x the single cavity lifetime in our room-temperature chip. Supported by three-dimensional numerical simulations and theoretical analyses, our multipump beam approach enables control of the multicavity resonances and intercavity phase, in both single and double transparency peaks. The standing-wave wavelength-scale photon localization allows direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics.


Three-Dimensional Modeling Of Transport Phenomena And Their Effect On The Formation Of Ripples In Gas Metal Arc Welding, Z. H. Rao, J. Zhou, S. M. Liao, Hai-Lung Tsai Mar 2010

Three-Dimensional Modeling Of Transport Phenomena And Their Effect On The Formation Of Ripples In Gas Metal Arc Welding, Z. H. Rao, J. Zhou, S. M. Liao, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Distinct, periodic arc-shaped ripples are observed on the surface of the weld bead in almost any welded components which have a significant effect on weld quality. This article presents the complex transport phenomena and their effect on the formation of ripples in three-dimensional moving gas metal arc welding. The transient distributions of the melt flow velocity and temperature in the weld pool, weld pool shape and dynamics, and solidified weld bead are calculated. It is found that the surface ripples are formed by the interplay between the up-and-down weld pool dynamics, caused mainly by the periodic droplet impingements, and the …


Combined H∞-Feedback Control And Iterative Learning Control Design With Application To Nanopositioning Systems, Brian E. Helfrich, Chibum Lee, Douglas A. Bristow, Jingyan Dong, Srinivasa M. Salapaka, Placid M. Ferreira, X. H. Xiao, Andrew G. Alleyne Mar 2010

Combined H∞-Feedback Control And Iterative Learning Control Design With Application To Nanopositioning Systems, Brian E. Helfrich, Chibum Lee, Douglas A. Bristow, Jingyan Dong, Srinivasa M. Salapaka, Placid M. Ferreira, X. H. Xiao, Andrew G. Alleyne

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper examines a coordinated feedback and feedforward control design strategy for precision motion control (PMC) systems. It is assumed that the primary exogenous signals are repeated; including disturbances and references. Therefore, an iterative learning control (ILC) feedforward strategy can be used. The introduction of additional non-repeating exogenous signals, including disturbances, noise, and reset errors, necessitates the proper coordination between feedback and feedforward controllers to achieve high performance. A novel ratio of repeated versus non-repeated signal power in the frequency domain is introduced and defined as the repetitive-to-non-repetitive (RNR) ratio. This frequency specific ratio allows for a new approach to …


Effects Of Shielding Gas Compositions On Arc Plasma And Metal Transfer In Gas Metal Arc Welding, Z. H. Rao, S. M. Liao, Hai-Lung Tsai Feb 2010

Effects Of Shielding Gas Compositions On Arc Plasma And Metal Transfer In Gas Metal Arc Welding, Z. H. Rao, S. M. Liao, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As …


Analysis Of The Theta-D Filter As Applied To Hit-To-Kill Interceptors And Satellite Orbit Determination, Michael W. Dancer Jan 2010

Analysis Of The Theta-D Filter As Applied To Hit-To-Kill Interceptors And Satellite Orbit Determination, Michael W. Dancer

Masters Theses

"When designing feedback control systems, there is often a need for estimation methods that provide system information that is not readily available via sensors placed within the system. In many cases a sensor that measures a particular system state either does not exist or is prohibitively expensive. In addition, all realistic systems contain some degree of nonlinearity. This thesis focuses on two such cases: missile guidance with bearings-only measurements and GPS satellite orbit determination. In each case, a new nonlinear filter, the [theta]-D method, is used and evaluated for its performance in providing the necessary estimation. To aid the filter …


Thrust Measurement Of Dielectric Barrier Discharge Plasma Actuators And Power Requirements For Aerodynamic Control, Joseph William Ferry Jan 2010

Thrust Measurement Of Dielectric Barrier Discharge Plasma Actuators And Power Requirements For Aerodynamic Control, Joseph William Ferry

Masters Theses

"Plasma-based aerodynamic actuators are of interest to researchers because they do not require moving control surfaces or a source of pressurized air to modify a flow field. Dielectric barrier discharge (DBD) plasma actuators have the added advantages of simple installation and low power consumption.

DBD plasma actuators are AC devices. This work measured actuator power consumption and thrust production for driving frequencies between 1 and 18 kHz, and for driving voltages of 6 and 9 kV peak to peak. The actuator consumed between 3 and 22 W of power and produced thrust levels between 0.05 and 0.2 mN per meter …


Quantification Of Uncertainty In Aerodynamic Heating Of A Reentry Vehicle Due To Uncertain Wall And Freestream Conditions, Benjamin R. Bettis Jan 2010

Quantification Of Uncertainty In Aerodynamic Heating Of A Reentry Vehicle Due To Uncertain Wall And Freestream Conditions, Benjamin R. Bettis

Masters Theses

"The primary focus of this study is to demonstrate an efficient approach for uncertainty quantification of surface heat flux to the spherical non-ablating heatshield of a generic reentry vehicle due to epistemic and aleatory uncertainties that may exist in various parameters used in the numerical solution of hypersonic, viscous, laminar blunt-body flows with thermo-chemical non-equilibrium. Two main uncertainty sources were treated in the computational fluid dynamics (CFD) simulations: (1) aleatory uncertainty in the freestream velocity and (2) epistemic uncertainty in the recombination efficiency for a partially catalytic wall boundary condition. The Second-Order Probability utilizing a stochastic response surface obtained with …


Management Of A University Satellite Program With Focus On A Refrigerant-Based Propulsion System, Shawn W. Miller Jan 2010

Management Of A University Satellite Program With Focus On A Refrigerant-Based Propulsion System, Shawn W. Miller

Masters Theses

"The Missouri University of Science and Technology Satellite (M-SAT) design team has established a satellite program to develop a pair of satellites to perform an autonomous formation flight mission. The resulting configuration was assembled for the Air Force Research Lab University Nanosat Program. This document, written by the Program Manager and former member of the Propulsion subsystem, is a description of the management process used by the team to develop a satellite configuration. Included in the document is a discussion of team organization, techniques for managing a program, and lessons learned during the 2007 to 2008 timeframe. The managing techniques …


A Numerical Investigation Of Flowfield Modification In High-Speed Airbreathing Inlets Using Energy Deposition, Matthew Flynn Rohweder Jan 2010

A Numerical Investigation Of Flowfield Modification In High-Speed Airbreathing Inlets Using Energy Deposition, Matthew Flynn Rohweder

Masters Theses

"Energy deposition in front of dual-mode ram/scramjet engines is numerically investigated utilizing two-dimensional CFD for its potential to modify inlet/isolator flow-fields for engine start/unstart control and for its general potential for generating large-scale flow-field modification in such flows. A simplified (high Mach number) constant-area duct geometry is initially defined in order to test the feasibility of the concept; the results from this initial investigation demonstrates possible beneficial effects of depositing energy upstream of a thermally choked duct in terms of causing massive changes in flow patterns, including the reestablishment of supersonic flow throughout the duct. This study is followed by …


Integration And Test Of A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Ryan Alan Pahl Jan 2010

Integration And Test Of A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Ryan Alan Pahl

Masters Theses

"Due to the launch safety constraints placed on university-built small satellites, designing a low-cost propulsion system to meet mission requirements presents a significant challenge to aspiring student engineers. The Missouri University of Science and Technology is currently developing a low-cost, two-phase propulsion system using the refrigerant R-134a as the propellant that can be stored at low pressures while still providing sufficient performance to meet mission goals. The purpose of this study is to present the testing results of a refrigerant-based cold gas system utilizing R-134a as a saturated liquid propellant and the ability to design this system to be portable …


Influence Of Interactions Between Turbulence And Radiation On Transmissivities In Hypersonic Turbulent Boundary Layers, A. M. Feldick, L. (Lian) Duan, M. F. Modest, M. P. Martín, D. A. Levin Jan 2010

Influence Of Interactions Between Turbulence And Radiation On Transmissivities In Hypersonic Turbulent Boundary Layers, A. M. Feldick, L. (Lian) Duan, M. F. Modest, M. P. Martín, D. A. Levin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In the current paper, a high-fidelity large eddy simulation solver is coupled to our modified line-by-line radiative transport equation solver to study the effects of absorption turbulence-radiation interations in a hypersonic turbulent boundary layer, representative of the Orion CEV entering Earth's atmosphere, at peak heating condition. The turbulent and radiation fields represent extreme conditions typical of Orion, as the simulated boundary layer represents the region of high turbulence coupled to region of highest incident radiation. A simplification in the calculation of molecular spectra with a single temperature property database in allows for tractable calculation of spectral properties. A comparison of …


Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers. Part 2. Effect Of Wall Temperature, L. (Lian) Duan, I. Beekman, M. P. Martín Jan 2010

Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers. Part 2. Effect Of Wall Temperature, L. (Lian) Duan, I. Beekman, M. P. Martín

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, we perform direct numerical simulation (DNS) of turbulent boundary layers at Mach 5 with the ratio of wall-to-edge temperature T w/T ℘ from 1.0 to 5.4 (Cases M5T1 to M5T5). The influence of wall cooling on Morkovin's scaling, Walz's equation, the standard and modified strong Reynolds analogies, turbulent kinetic energy budgets, compressibility effects and near-wall coherent structures is assessed. We find that many of the scaling relations used to express adiabatic compressible boundary-layer statistics in terms of incompressible boundary layers also hold for non-adiabatic cases. Compressibility effects are enhanced by wall cooling but remain insignificant, and the …


Direct Detection Of No Produced By High-Temperature Surface-Catalyzed Atom Recombination, Dušan A. Pejaković, Jochen Marschall, Lian Duan, Maria P. Martin Jan 2010

Direct Detection Of No Produced By High-Temperature Surface-Catalyzed Atom Recombination, Dušan A. Pejaković, Jochen Marschall, Lian Duan, Maria P. Martin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The surface-catalytic recombination of oxygen and nitrogen atoms to form nitric oxide was confirmed by the direct detection of product NO molecules, using single-photon laser-induced fluorescence spectroscopy. Experiments were performed from room temperature to 1200 K in a quartz diffusion-tube sidearm reactor enclosed in a high temperature tube furnace. Atomic nitrogen was generated using a microwave discharge, and atomic oxygen was produced via the rapid gas-phase titration reaction N + NO → O + N2. The use of isotopically labeled titration gases 15N16O and 15N18O allowed for the unambiguous identification of nitric oxide produced by the O + N surface …


Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers With Varying Freestream Mach Number, L. (Lian) Duan, I. Beekman, M. P. Mart́In Jan 2010

Direct Numerical Simulation Of Hypersonic Turbulent Boundary Layers With Varying Freestream Mach Number, L. (Lian) Duan, I. Beekman, M. P. Mart́In

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, the effects of freestream Mach number on the statistics and large-scale structures in compressible turbulent boundary layers are investigated using direct numerical simulations (DNS). DNS of turbulent boundary layers with nominal freestream Mach number ranging from 3 to 8 are performed. The validity of Morkovin's scaling, strong Reynolds analogy, and Walz's equation are assessed. We find that many of the scaling relations used to express compressible boundary layer statistics in terms of incompressible boundary layers still hold for the range of freestream Mach number considered. Compressibility effects are enhanced with increasing freestream Mach number but remain insignificant, …


Low-Thrust Control Of Orbital Elements, Nathan Harl Jan 2010

Low-Thrust Control Of Orbital Elements, Nathan Harl

Doctoral Dissertations

"This dissertation presents a method for controlling the orbital elements of a spacecraft using continuous low-thrust systems. The method involves the use of a general performance index, which is designed to minimize the difference between the instantaneous orbital elements of a spacecraft and some desired set of orbital elements. Due to the generality of the controller design, the resultant controller can be applied to a wide variety of scenarios about various bodies in space. To minimize the designed performance index, a shooting method and a Sequential Quadratic Programming algorithm are utilized and compared.

The primary application of the general controller …