Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

California Polytechnic State University, San Luis Obispo

Optimization

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Parametric Optimization Of A Wing-Fuselage System Using A Vorticity-Based Panel Solver, Chino Cruz Dec 2023

Parametric Optimization Of A Wing-Fuselage System Using A Vorticity-Based Panel Solver, Chino Cruz

Master's Theses

Aerodynamic topology optimization is a useful tool in the aerodynamic design pro-
cess, especially when looking for marginal gains within a design. One example is
a turboprop racer concept aircraft that is designed with the goal of breaking world
speed records. An optimization framework was developed with the intention of later
being applied to this design. In the early design stages, the optimization framework
must focus on quicker methods of drag estimation, such as a panel codes. The large
number of design variables in topology optimization can exponentially increase func-
tion evaluations and thus computational cost. A vorticity-based panel solver …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen Aug 2021

Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen

Master's Theses

Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability …


Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty Dec 2020

Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty

Master's Theses

Critical aspects of spacecraft missions, such as component organization, control algorithms, and trajectories, can be optimized using a variety of algorithms or solvers. Each solver has intrinsic strengths and weaknesses when applied to a given optimization problem. One way to mitigate limitations is to combine different solvers in an island model that allows these algorithms to share solutions. The program Spacecraft Trajectory Optimization Suite (STOpS) is an island model suite of heterogeneous and homogeneous Evolutionary Algorithms (EA) that analyze interplanetary trajectories for multiple gravity assist (MGA) missions. One limitation of STOpS and other spacecraft trajectory optimization programs (GMAT and Pygmo/Pagmo) …


Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy Dec 2020

Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy

Master's Theses

The information presented in the thesis is a continuation of the Spacecraft Trajectory Optimization Suite (STOpS). This suite was originally designed and developed by Timothy Fitzgerald and further developed by Shane Sheehan, both graduate students at California Polytechnic State University, San Luis Obispo. Spacecraft utilizing low-thrust transfers are becoming more and more common due to their efficiency on interplanetary trajectories, and as such, finding the most optimal trajectory between two planets is something of interest. The version of STOpS presented in this thesis uses Multiple Gravity-Assist Low-Thrust (MGALT) trajectories paired with the island model paradigm to accomplish this goal. The …


B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef Dec 2020

B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef

Master's Theses

In interplanetary trajectory applications, it is common to design arrival trajectories based on B-plane target values. This targeting scheme, B-plane targeting, allows for specific target orbits to be obtained during mission design. A primary objective of this work was to implement B-plane targeting into the Spacecraft Trajectory Optimization Suite (STOpS). This work was based on the previous versions of STOpS done by Fitzgerald and Sheehan, however STOpS was redeveloped from MATLAB to python. This updated version of STOpS implements 3-dimensional computation, departure and arrival orbital phase modeling with patched conics, B-plane targeting, and a trajectory correction maneuver. The optimization process …


Whitespace Exploration, Jason Lloyd Daniel Dec 2017

Whitespace Exploration, Jason Lloyd Daniel

Master's Theses

As engineering systems grow in complexity so too must the design tools that we use evolve and allow for decision makers to efficiently ask questions of their model and obtain meaningful answers. The process of whitespace exploration has recently been developed to aid in engineering design and provide insight into a design space where traditional design exploration methods may fail. In an effort to further the research and development of whitespace exploration algorithms, a software package called Thalia has been created to allow for automated data collection and experimentation with the whitespace exploration methodology.

In this work, whitespace exploration is …


A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross Jan 2017

A Method For Evaluating Aircraft Electric Power System Sizing And Failure Resiliency, Cory Kenneth Kross

Master's Theses

With the More Electric Aircraft paradigm, commercial commuter aircraft are increasing the size and complexity of electrical power systems by increasing the number of electrical loads. With this increase in complexity comes a need to analyze electrical power systems using new tools. The Hybrid Power System Optimizer (HyPSO) developed by Airbus SAS is a simulator designed to analyze new aircraft power systems. This thesis project will first provide a method to assess the reliability of complex aircraft electrical power systems before and after failure and reconfiguration events. Next, an add-on to HyPSO is developed to integrate the previously developed reliability …


Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald Dec 2015

Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald

Master's Theses

In trajectory optimization, a common objective is to minimize propellant mass via multiple gravity assist maneuvers (MGAs). Some computer programs have been developed to analyze MGA trajectories. One of these programs, Parallel Global Multiobjective Optimization (PaGMO), uses an interesting technique known as the Island Model Paradigm. This work provides the community with a MATLAB optimizer, STOpS, that utilizes this same Island Model Paradigm with five different optimization algorithms. STOpS allows optimization of a weighted combination of many parameters. This work contains a study on optimization algorithm performance and how each algorithm is affected by its available settings.

STOpS successfully found …


Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad Dec 2011

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad

Master's Theses

The paper describes the background and concepts behind a master’s thesis platform known as COMET (Constrained Optimization of Multiple-dimensions for Efficient Trajectories) created for mission designers to determine and evaluate suitable interplanetary trajectories. This includes an examination of the improvements to the global optimization algorithm, Differential Evolution, through a cascading search space pruning method and decomposition of optimization parameters. Results are compared to those produced by the European Space Agency’s Advanced Concept Team’s Multiple Gravity Assist Program. It was found that while discrepancies in the calculation of ΔV’s for flyby maneuvers exist between the two programs, COMET showed a noticeable …


Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey Jun 2009

Multidisciplinary Design Optimization Of An Extreme Aspect Ratio Hale Uav, Bryan J. Morrisey

Master's Theses

ABSTRACT

Multidisciplinary Design Optimization of an Extreme Aspect Ratio HALE UAV

Bryan J. Morrisey

Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. Presently, several development efforts are underway in this field, including a project sponsored by DARPA that aims at producing an aircraft that can sustain flight for multiple years and …