Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield Dec 2016

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield

Master's Theses

An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on …


Dji S-1000 Spreading Wings Octocopter: Determination Of Rotor Downwash Slipstream Size, Jonathan Lemieux Dec 2016

Dji S-1000 Spreading Wings Octocopter: Determination Of Rotor Downwash Slipstream Size, Jonathan Lemieux

Masters Theses

The DJI S-1000 Spreading Wings octocopter rotor downwash slipstream area of influence was measured in axial climb conditions and in straight level flight. These data were gathered using a simple apparatus of distributed anemometers and a custom made boom affixed to the drone. Straight level flight tests incurred autopilot oscillations that rendered the data gathering and analysis challenging. The best quality data was acquired during the axial climb flight tests. The axial climbs were conducted in calm winds. It was determined that the axial climbs under these conditions displaced the rotor slipstream 9 ± 2.5 cm to the rear of …


Risk-Based Approach To Assessment Of Advanced Technologies For Conceptual Design, Adipratnia Asmady Aug 2016

Risk-Based Approach To Assessment Of Advanced Technologies For Conceptual Design, Adipratnia Asmady

Master's Theses

The conceptual design phase of an aerospace system development program is typically characterized by short duration and relatively limited resources, yet design decisions are made that have critical implications on program risk. To address the more aggressive requirements, one of these decisions is the selection of advanced technologies. System developers need to assess advanced technologies early on, but are faced with uncertainties surrounding the potential net benefits. The concept introduced in this study is uncertainty characterization as a way to better understand the associated risk. A framework was developed to guide the interaction between the technology developer and the system …


Tilt-Rotor Drone, Benjamin Stone, Zachary Crandall Jun 2016

Tilt-Rotor Drone, Benjamin Stone, Zachary Crandall

Electrical Engineering

A drone is defined a "an unmanned aircraft that can fly autonomously[2]." In the year 2016, there exist many applications for small scale drones. Drones, having had primarily military applications, now have use in hobby robotics, photography, and even in surveying. But drones have not yet been perfected and still have room for much improvement. Several problems with drones come in the form of battery life, stability, and size. Large drones can fit many sensors and probes, but are heavy and have less flight time. For autonomous drones, stability can be an issue even though there exist many stable drones. …


Uav As A Service: Providing On-Demand Access And On-The-Fly Retasking Of Multi-Tenant Uavs Using Cloud Services, Justin Yapp May 2016

Uav As A Service: Providing On-Demand Access And On-The-Fly Retasking Of Multi-Tenant Uavs Using Cloud Services, Justin Yapp

Doctoral Dissertations and Master's Theses

As commercial roles for Unmanned Aerial Vehicles (UAVs) become more well-defined and demand for the services provided by them increases, UAVs rely more on new cloud computing services and co-operative coordination to provide mission planning, control, tracking and data processing. We present UAV as a Service (UAVaaS) framework, which brings features commonly found in traditional cloud services, such as Infrastructure, Platform, and Software as a Service, to the domain of UAVs. Our work aims to conceptualize and design UAVaaS for commercial applications. Specifically, a cloud-provided orchestration framework that allows multi-tenant UAVs to easily serve multiple heterogenous clients at once and …


Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby May 2016

Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby

Masters Theses

Atmospheric entry studies typically look closely at the peak heating rate that a body encounters during its trajectory. This is an extremely important phenomenon to study because it allows engineers to determine if a trajectory is possible with given materials and craft design specifications. It also allows designers to choose what type of method will be used for mitigating the enormous heat fluxes during entry. In general, it is accepted that during the super-sonic flight regime the body will continue to be heated and an ablative heat shield often is used to deal with these heating processes. The theory outlined …


2d Aeroacoustic Analysis Of Flow In The Flame Trench, Meghan Pokorski May 2016

2d Aeroacoustic Analysis Of Flow In The Flame Trench, Meghan Pokorski

Doctoral Dissertations and Master's Theses

We present here a methodology for using the commercial software ANSYSFLUENT to predict the acoustic field associated with Space-Launch System (SLS). We consider a two-dimensional model of flame deflector, and flame trench. The ANSYS code is then used to simulate the internal flow. Both the steady state case is considered along with other cases where the inflow has a harmonic component. A Ffowcs-Williams Hawking (FWH) surface is then constructed within the computational domain to use the computed flow fluctuations to obtain the acoustic field. The acoustic data was then compared to the experimental data.

When using the ANSYS code for …


High Power Rocket Design Report, Laura E. Calcara, Monica Fernandez, Chris Green, Trent Hosokawa Apr 2016

High Power Rocket Design Report, Laura E. Calcara, Monica Fernandez, Chris Green, Trent Hosokawa

Honors Thesis

Highpower rockets are extremely sensitive systems that require precise planning, testing, and analysis in order to yield accurate results. Under the guidance of project advisor, Dan Larson, a highpower rocket was designed and built to reach an apogee of 3000 feet. Additionally, means of dual deployment was used in order to aid in the safe descent and recovery of the rocket. In order to meet this expectation, two parachutes were used in conjunction with black powder ejection charges. Compliance with the safety standards of NAR and NFPA was met for the ejection system used in dual deployment. To ensure that …


Comparisons Of Ablator Experimental Performance To Response Modeling And Effects Of Water Phase Transition In Porous Tps Materials, David L. Smith Jan 2016

Comparisons Of Ablator Experimental Performance To Response Modeling And Effects Of Water Phase Transition In Porous Tps Materials, David L. Smith

Theses and Dissertations--Mechanical Engineering

The Mars Science Laboratory Entry Descent and Landing Instrumentation (MEDLI) project performed extensive arc jet tests for development, qualification, and calibration of instrumented heat shield plugs. These plugs each contained several thermocouples for recording near-surface and in-depth temperature response of the Phenolic Impregnated Carbon Ablator (PICA) heat shield. The arc jet test results are entered into a comprehensive database so that broad trends across the test series can be compared. One method of analysis is to compare with ablator material response calculations and solve the in-depth heat conduction equations. Using the near-surface thermocouple measurements as a boundary condition in numerical …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …