Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Adaptive Control Of An Aeroelastic System For Active Flutter Suppression And Disturbance Rejection, Patrick Sterling Downs Apr 2024

Adaptive Control Of An Aeroelastic System For Active Flutter Suppression And Disturbance Rejection, Patrick Sterling Downs

Doctoral Dissertations and Master's Theses

The future of aircraft design strives for lighter weight, more aerodynamically efficient structures. These improvements may come with the drawback of increased structural flexibility and elevated aeroelastic effects, often resulting in a lower flutter speed. This motivates the implementation of advanced control methods to control aeroelastic systems over a range of flight conditions, suppress and delay the onset of flutter, and compensate for disturbances, actuator dynamics, and unmodeled nonlinear dynamics.

This dissertation first develops a novel method for constructing time-domain simulation models of two and three-dimensional aeroelastic systems, resulting in models that are suitable for the implementation of state-space control …


Numerical Modeling Of Synthetic Vortical Disturbance Interactions Using Openfoam, Ahmed Bilal Apr 2023

Numerical Modeling Of Synthetic Vortical Disturbance Interactions Using Openfoam, Ahmed Bilal

Doctoral Dissertations and Master's Theses

Nowadays, the number of Advance Air Mobility (AAM) Electic Vertical Take-off and Landing (eVTOL) concepts is rapidly increasing due to their capability of vertical take-off and landing at vertiports located on rooftops of tall urban buildings, which does not require using the ground space in a condensed urban environment. Such flight operations, however, will be greatly affected by the vertiport’s highly unsteady, turbulent flow environment. The goal of this study is to model the turbulent wind interaction with a building to understand the unsteady flow characteristics around vertiports and match the induced unsteady disturbance field to the canonical disturbance forms, …


Numerical Study Of Owls’ Leading-Edge Serrations, Asif Shahriar Nafi Jan 2023

Numerical Study Of Owls’ Leading-Edge Serrations, Asif Shahriar Nafi

Electronic Theses and Dissertations

The silent flight ability of owls is often attributed to their unique wing morphology and its interaction with their wingbeat kinematics. Among these distinctive morphological features, leading-edge serrations stand out – these are rigid, miniature, hook-like patterns located at the leading edge of the primary feathers of their wings. It had been hypothesized that these leading-edge serrations serve as a passive flow control mechanism, influencing the aerodynamic performance and potentially affecting the boundary layer development over the wing, subsequently influencing wake flow dynamics. Despite being the subject of research spanning multiple decades, a consensus regarding the aerodynamic mechanisms underpinning owls’ …


Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi Jan 2023

Stratospheric Glider Measurements Of Atmospheric Parameters, Anisa Haghighi

Theses and Dissertations--Mechanical Engineering

In June 2021 a series of high altitude flights were conducted in Spaceport America, NM, using a balloon launched Uncrewed Aircraft System (UAS) to assess its capability to conduct measurements of various atmospheric properties and study turbulence in the troposphere and lower stratosphere. This UAS descends using an automated flight trajectory. The instruments aboard included a NASA-developed infrasonic microphone to evaluate its remote turbulence detection capabilities and a five-hole probe capable of measuring the in situ wind vector. Also on board were temperature, humidity and wind profile sensors. This document focuses on the atmospheric properties measured at high altitudes, the …


Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport Aug 2022

Upscaling And Development Of Linear Array Focused Laser Differential Interferometry For Simultaneous 1d Velocimetry And Spectral Profiling In High-Speed Flows, Kirk Davenport

Masters Theses

In this research a new configuration of linear array-focused laser differential interferometry (LA-FLDI) is described. This measurement expands on previous implementations of LA-FLDI through the use of an additional Wollaston prism. This additional prism expands the typical single LA-FLDI column into two columns of FLDI point pairs. The additional column of probed locations allows for increased spatial sampling of frequency spectra as well as the addition of simultaneous wall normal velocimetry measurements. The new configuration is used to measure the velocity profile and frequency content across a Mach 2 turbulent boundary layer at six wall normal locations simultaneously. Features of …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Proper Orthogonal Decomposition Of Reynolds And Dispersive Stresses In Turbulent Boundary Layers Over Multi-Scale Rough Patches, Catherine Virginia Spivey Jul 2022

Proper Orthogonal Decomposition Of Reynolds And Dispersive Stresses In Turbulent Boundary Layers Over Multi-Scale Rough Patches, Catherine Virginia Spivey

Dissertations and Theses

Multi-scale rough patches are present in topologies such as urban canopies (cities) and natural landscapes (forests, ocean floors). The flow over such canopies is three-dimensional, with turbulent structures known as secondary flows present in the boundary layer due to the difference in rough surface heterogeneities. Three dimensional instantaneous velocities are analyzed within the roughness sublayer over three generations of multi-scale rough patches at nine vertical planes using particle image velocimetry obtained experimentally. The secondary structures present in the flow are identified in the form of Reynolds and dispersive fluctuations. Proper orthogonal decomposition is employed to characterize the imprint of the …


Aerodynamics And Turbulent Wake-Flow Characteristics Of Owls During Flapping Flight, Krishnamoorthy Krishnan May 2022

Aerodynamics And Turbulent Wake-Flow Characteristics Of Owls During Flapping Flight, Krishnamoorthy Krishnan

Electronic Theses and Dissertations

Owls exhibit unique flight capabilities in the low Reynolds number flow regime which is prone to complex viscous flow phenomena. They possess unique feather features and flexible wing structures which are postulated to help them fly nearly silently and stably at low speeds in a complex flow setting. Understanding the aerodynamics of owls could pave the way to enhance the future designs of small flying vehicles. Though it has been a focus of research over multiple decades, no conclusive agreement has been attained on the aerodynamic mechanisms associated with owl flight. Particularly, the aerodynamics of flapping owl flight is severely …


Experimental Investigation Of Roughness And Blowing Effects Over Ablator-Like Surfaces, Colby Borchetta Jan 2022

Experimental Investigation Of Roughness And Blowing Effects Over Ablator-Like Surfaces, Colby Borchetta

Theses and Dissertations--Mechanical Engineering

Two separate experiments using PIV were carried out to investigate the effects of
roughness and blowing over surfaces geometrically similar to ablation materials used for atmospheric re-entry. The first, water tunnel experiments, employed a dimpled surface similar to AVCOAT, while the second set was completed in a wind tunnel with a material similar to PICA. For the first set, the flow with blowing becomes destabilized, and more disorganized. The blowing disrupts the relatively simple vorticity shedding process and significantly modifies momentum transport via interaction of detached structures. Flow structure and their modifications were examined with a sPOD analysis. The focus …


The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse Sep 2021

The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse

Dissertations and Theses

With data from experiments on a jet of air emitting from an orifice flush with the floor of a wind tunnel providing a transverse flow, analysis is conducted to extract information about the state of anisotropy in the Reynolds stress tensor. Inflow velocities are modulated across two distinct turbulence intensity regimes while holding jet exit conditions constant, providing an opportunity to isolate effects of both jet to crossflow velocity ratio, r and the effects of the turbulence carried by the crossflow. Anisotropy in the Reynolds stress tensor is examined through anisotropy invariant maps and evolution of the function F, …


Fixed Bottom Wind Turbine Wave-Wake Interaction, Ondrej Fercak Jul 2021

Fixed Bottom Wind Turbine Wave-Wake Interaction, Ondrej Fercak

Dissertations and Theses

The interest and benefits of offshore wind energy has also brought along legitimate design challenges for engineers. Most notably, the complex interaction between wind and turbine is further complicated by the addition of dynamic ocean waves. This dynamic coupling between wind, wave, and turbine is not fully understood. Even small improvements in wind turbine performance are welcome, so characterizing a fundamental dynamic in offshore energy is necessary to optimize design. Experimentation and simulation have been used to characterize inflow and turbine wakes and separately, wind-wave interactions. But only simulations have just begun to look at the wind, wave, and turbine …


Optical Measurements Of Viscous Interactions On A Hollow-Cylinder / Flare In A Mach 4 Freestream, Jack William Cobourn Dec 2020

Optical Measurements Of Viscous Interactions On A Hollow-Cylinder / Flare In A Mach 4 Freestream, Jack William Cobourn

Masters Theses

Despite decades of research, shock-wave/boundary-layer interactions and laminar-turbulent transition remain uncertainties in the design of hypersonic vehicles. Due to the significant demand for hypersonic capabilities and the relevance of these flow physics to air-breathing, high-lift, hypersonic vehicles, continued study is necessary. In order to support such study at the University of Tennessee Space Institute, two optical diagnostics were investigated for use in the Mach 4 Ludwig tube at the Tennessee Aerothermal Laboratory, focused laser differential interferometry and schlieren. Significant attention was given to the theory behind and application of focused laser differential interferometry to support future work at the University …


Interaction Of High Aspect-Ratio Micro-Pillars With Wall Turbulence, Pratik Suhas Deshpande Apr 2020

Interaction Of High Aspect-Ratio Micro-Pillars With Wall Turbulence, Pratik Suhas Deshpande

Doctoral Dissertations and Master's Theses

An experimental study of the interaction between hairy structures modeled as high-aspect ratio micro-pillars (HAMuP) and wall turbulence is presented. Micro-pillars are elastic, hair-like microstructures which have been inspired by naturally occurring examples like lateral line sensors in fish and air flow sensors in bats. The objective of this thesis was two fold: to develop a manufacturing process for consistent production of HAMuP arrays, and to conduct a study focusing on the interaction of HAMuP arrays with wall turbulence. Hotwire anemometry measurements were carried out in two different experimental facilities at three different streamwise locations to describe the interaction between …


Rough Airfoil Simulation For Wind Turbine Applications, Nathaniel B. Develder Mar 2020

Rough Airfoil Simulation For Wind Turbine Applications, Nathaniel B. Develder

Doctoral Dissertations

As a result of insects or other environmental fouling, surface roughness on wind turbine blades can reduce power output significantly. Superhydrophobic surfaces, though possibly a passive, cost-saving, answer to the problem of ice accretion on wind turbine rotors in cold climates, may alter turbulence development in the blade boundary layer similar to environmental roughness. This work uses an equivalent sand grain extension to the Turbulent Potential model to computationally assess the aerodynamic effects of surface roughness on the s809 airfoil, including a representational superhydrophobic surface. Rough surface boundary layer theory, application of the equivalent sand grain method, roughness parameter correlation, …


Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis Jan 2020

Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis

Dissertations and Theses

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles in the turbulent wake of a stationary porous disk. Various concentrations [Φv ∈ (2.95 x 10-6 - 1.22 x 10-5)] of polydisperse water droplets (diameter 13-41 µm) are compared to sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near and far wake regions to study the complex dynamics of the particles. Turbulence statistics and particle size distributions are presented and used to explore the particle wake interaction.


The Spanwise Structure Of The Roof-Level Turbulence In A Street Canyon Flow, Tomek Jaroslawski Sep 2018

The Spanwise Structure Of The Roof-Level Turbulence In A Street Canyon Flow, Tomek Jaroslawski

Electronic Thesis and Dissertation Repository

In the present work, for the first time, the spanwise organization of turbulent flow along an urban street canyon subjected to wind normal to the street axis using a boundary layer wind tunnel is systematically investigated.The effect of upstream roughness and canyon width on the turbulence in a street canyon flow is presented. Measurements in a horizontal plane were conducted at near roof-level of a street canyon using Stereoscopic Particle Image Velocimetry. Three upstream roughness arrays and two canyon width (W) to height (h) aspect ratios (AR = W / h = 1 and 3) were …


Characterization Of A Turbulent Boundary Layer In Open Channel Flow Using Particle Image Velocimetry, Mathew James Stanek Jul 2018

Characterization Of A Turbulent Boundary Layer In Open Channel Flow Using Particle Image Velocimetry, Mathew James Stanek

Electronic Theses and Dissertations

Turbulent boundary layers are influential in numerous applications (e.g. naval architecture, ocean engineering, sediment transport, etc.), yet considerable knowledge gaps still exist. Boundary layers are regions where transfer of mass, momentum, energy, and heat occur within the interface between a fluid and a solid, or between two fluids. Utilization of optical flow measurement techniques to measure the velocity field with high spatial resolution enables non-intrusive investigation of the complex fluid dynamics of boundary layers. In this study two-dimensional Particle Image Velocimetry was employed to investigate, primarily, the overlap layer of a turbulent boundary layer developed in the recirculating flume facility …


Wing-Tip Vortex Evolution In Turbulence, Hari Charan Ghimire Jan 2018

Wing-Tip Vortex Evolution In Turbulence, Hari Charan Ghimire

Theses and Dissertations--Mechanical Engineering

Planar and stereo particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence in order to understand the evolution of a vortex and its decay mechanism. The vortex decayed faster in the presence of turbulence. The decay of the circulation was found to be almost entirely due to a decrease in circulation of the vortex core, caused by the relative decrease in peak tangential velocity without a corresponding increase in core radius. These events were found to be connected with the stripping of core fluid from the vortex core. The increased rate of decay of the …


Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan Jan 2018

Large Eddy Simulation Of Oscillatory Flow Over A Mobile Rippled Bed Using An Euler-Lagrange Approach, Daniel S. Hagan

Graduate College Dissertations and Theses

A volume-filtered Large-Eddy Simulation (LES) of oscillatory flow over a rippled mobile bed is conducted using an Euler-Lagrange approach. As in unsteady marine flows over sedimentary beds, the experimental data, referenced in this work for validation, shows quasi-steady state ripples in the sand bed under oscillatory flow. This work approximately reproduces this configuration with a sinusoidal pressure gradient driven flow and a sinusoidally rippled bed of particles. The LES equations, which are volume-filtered to account for the effect of the particles, are solved on an Eulerian grid, and the particles are tracked in a Lagrangian framework. In the Discrete Particle …


Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi Jan 2018

Intermittency Effects On The Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah Falih Habeeb Alhamdi

Theses and Dissertations--Mechanical Engineering

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length-scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions, due to the imperfect characterization of the upper bound of the inertial cascade by the integral length-scale. When a length-scale based on Townsend's …


Estimation Of Turbulence Effects On Wind-Induced Suctions On The Roof Of A Low-Rise Building, Chieh-Hsun Wu Aug 2017

Estimation Of Turbulence Effects On Wind-Induced Suctions On The Roof Of A Low-Rise Building, Chieh-Hsun Wu

Electronic Thesis and Dissertation Repository

The effects of turbulence in the atmospheric boundary layer (ABL) on surface pressures of a typical low-rise building roof are investigated in this thesis. A 1/50 geometrically-scaled model of the Texas Tech University Wind Engineering Field Research Lab (WERFL) building model is used for pressure measurements in wind tunnel experiments. ABL wind turbulence intensities ranging from about 10% to 30%, and length scales ranging from 6 to 12 times of the building height (H) are generated. The effects of ABL turbulence on the mean roof pressures within the separated flow are explained from the time-averaged Navier-Stokes equations. The pressure fields …


Fundamental Study And Development Of Tuned Active Flow Control Actuators, Brian A. Binkley Aug 2017

Fundamental Study And Development Of Tuned Active Flow Control Actuators, Brian A. Binkley

Doctoral Dissertations

A novel, multi-level, flow-control actuator was developed using piezoceramic materials. Several actuators were fabricated in various shapes and sizes to produce a variety of effects for flow control applications. The actuators were studied in a quiescent-air bench test to understand the vibrations produced by various actuator shapes. The actuator flow-control effect was studied experimentally with flat-plate and cavity configurations, and was studied numerically using moving boundary conditions and dynamic meshing. The disturbances produced by the actuator couple with the cavity flow field producing increased cavity tones, increased vorticity, and sustainment of large-scale vorticity downstream of the cavity. The combined actuation …


Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li Jan 2017

Data-Driven Adaptive Reynolds-Averaged Navier-Stokes K - Ω Models For Turbulent Flow-Field Simulations, Zhiyong Li

Theses and Dissertations--Mechanical Engineering

The data-driven adaptive algorithms are explored as a means of increasing the accuracy of Reynolds-averaged turbulence models. This dissertation presents two new data-driven adaptive computational models for simulating turbulent flow, where partial-but-incomplete measurement data is available. These models automatically adjust (i.e., adapts) the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k-ω turbulence equations to improve agreement between the simulated flow and a set of prescribed measurement data.

The first approach is the data-driven adaptive RANS k-ω (D-DARK) model. It is validated with three canonical flow geometries: pipe flow, the backward-facing step, and flow around an airfoil. For all 3 test …


Flame-Turbulence Interaction For Deflagration To Detonation, Jessica Chambers Jan 2016

Flame-Turbulence Interaction For Deflagration To Detonation, Jessica Chambers

Honors Undergraduate Theses

Detonation is a high energetic mode of pressure gain combustion that exploits total pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. Detonation is initiated through the Deflagration-to-Detonation Transition (DDT). This process occurs when a deflagrated flame is accelerated through turbulence induction, producing shock-flame interactions that generate violent explosions and a supersonic detonation wave. There is a broad desire to unravel the physical mechanisms of turbulence induced DDT. For the implementation of efficient detonation methods in propulsion and energy applications, it is crucial to understand optimum turbulence conditions for detonation initiation. The study examines the role of turbulence-flame …


Experimental Investigation Of Wall Shear Stress Modifications Due To Turbulent Flow Over An Ablative Thermal Protection System Analog Surface, Jacob Helvey Jan 2015

Experimental Investigation Of Wall Shear Stress Modifications Due To Turbulent Flow Over An Ablative Thermal Protection System Analog Surface, Jacob Helvey

Theses and Dissertations--Mechanical Engineering

Modifications were made to the turbulent channel flow facility to allow for fully developed rough quasi-2D Poiseuille flow with flow injection through one surface and flow suction through the opposing surface. The combination of roughness and flow injection is designed to be analogous to the flow field over a thermal protection system which produces ablative pyrolysis gases during ablation. It was found that the additional momentum through the surface acted to reduce skin friction to a point below smooth-wall behavior. This effect was less significant with increasing Reynolds number. It was also found that the momentum injection modified the wake …


Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite Jul 2013

Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite

Master's Theses

An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 …


Experimental Characterization Of Roughness And Flow Injection Effects In A High Reynolds Number Turbulent Channel, Mark A. Miller Jan 2013

Experimental Characterization Of Roughness And Flow Injection Effects In A High Reynolds Number Turbulent Channel, Mark A. Miller

Theses and Dissertations--Mechanical Engineering

A turbulent channel flow was used to study the scaling of the combined effects of roughness and flow injection on the mean flow and turbulence statistics of turbulent plane Poiseuille flow. It was found that the additional momentum injected through the rough surface acted primarily to enhance the roughness effects and, with respect to the mean flow, blowing produced similar mean flow effects as increasing the roughness height. This was not found to hold for the turbulence statistics, as a departure from Townsend’s hypothesis was seen. Instead, the resulting outer-scaled streamwise Reynolds stress for cases with roughness and blowing deviated …


Unsteady Total Pressure Measurement For Laminar-To-Turbulent Transition Detection, Akane Sharon Karasawa Aug 2011

Unsteady Total Pressure Measurement For Laminar-To-Turbulent Transition Detection, Akane Sharon Karasawa

Master's Theses

This thesis presents the use of an unsteady total pressure measurement to detect laminar-to-turbulent transition. A miniature dynamic pressure transducer, Kulite model XCS-062-5D, was utilized to measure the total pressure fluctuations, and was integrated with an autonomous boundary layer measurement device that can withstand flight test conditions. Various sensor-probe configurations of the Kulite pressure transducer were first examined in a wind tunnel with a 0.610 m (2.0 ft) square test section with a maximum operational velocity of 49.2 m/s (110 mph), corresponding dynamic pressure of 1.44 kPa (30 psf). The Kulite sensor was placed on an elliptical nose flat plate …


Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart Jun 2011

Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart

Aerospace Engineering

A design is developed for a Natural Laminar Flow (NLF) wing, to be used at California Polytechnic State University for acoustic turbulence testing. Composite materials are used to produce high-quality surface finishes necessary for laminar flow. A design for the test apparatus is presented and justified. A manufacturing procedure is proposed for the carbon fiber skin, using Vacuum Resin Infusion (VRI). This procedure is tested on a scaled part with satisfactory results; lessons learned are discovered and integrated into the final manufacturing process. The test section has been fit to the Cal Poly wind tunnel, but full implementation has not …


Experimental Characterization Of Turbulent Flow Around Cylinder Arrays, Adam D. Harder Mar 2007

Experimental Characterization Of Turbulent Flow Around Cylinder Arrays, Adam D. Harder

Theses and Dissertations

This research was done as part of an effort to develop alternative fire suppressant technologies for aircraft engine nacelles. A circular cylinder array was designed, built, and placed in the AFIT roll-around low speed wind tunnel to model generic clutter inside an engine nacelle. A turbulence grid was fabricated to enable measurements of the effects of turbulence level, independent of airspeed, on the flow over different model configurations. The wind tunnel test section was 12 inches wide x 12 inches high x 24 inches long. Pressure differential measurements were taken on various cylinder configurations. The configurations included one cylinder as …