Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

A Dynamic Scoring Methodology For Morphing Airfoil Designs With Application To A Stalling Scenario, Stone Wachs Dec 2023

A Dynamic Scoring Methodology For Morphing Airfoil Designs With Application To A Stalling Scenario, Stone Wachs

UNLV Theses, Dissertations, Professional Papers, and Capstones

Shape Changing Airfoils (SCAs) are a developing technology with potential aircraft applications. Leading aerospace corporations are actively researching SCA capabilities. The necessity for this technology stems from the requirement of control surfaces for safe aircraft control. However, the process of testing and determining optimal SCA designs can be costly and time-consuming. While methodologies exist, they often require specific scenario examples and lack a standard approach. To address this issue, a standardized methodology is needed that can be applied to various applications and scenarios. This methodology consists of computational/experimentally produced data for airfoils, a subjective and strategic scoring equation, an algorithmic …


Towards Cfd Investigations Into Particulate Air Pollution Of A Desert Urban Environment, Prosun Roy Aug 2023

Towards Cfd Investigations Into Particulate Air Pollution Of A Desert Urban Environment, Prosun Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

This dissertation has explored computational fluid dynamics (CFD) techniques for studying particulate air quality in the Las Vegas urban area. The dissertation is based on three research tasks:

  • • High time-resolution fenceline air quality sensing and dispersion modeling for environmental justice-centered source attribution. (Chapter 2)
  • • Pollen dispersion and deposition in real-world urban settings: A computational fluid dynamic study. (Chapter 3)
  • • Effects of urban canopy parameterizations on modeling pollen dispersion and exposure. (Chapter 4)

In Chapter 2, we investigate the facilitation of low-cost air quality sensors (LCAQS) and CFD technique on exposure assessment of environmental justice (EJ) communities and …


Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes May 2023

Mathematical Modeling: Finite Element Analysis And Computations Arising In Fluid Dynamics And Biological Applications, Jorge Reyes

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is often the case when attempting to capture real word phenomena that the resulting mathematical model is too difficult and even not feasible to be solved analytically. As a result, a computational approach is required and there exists many different methods to numerically solve models described by systems of partial differential equations. The Finite Element Method is one of them and it was pursued herein.This dissertation focuses on the finite element analysis and corresponding numerical computations of several different models. The first part consists of a study on two different fluid flow models: the main governing model of fluid …


Simulating Condensation In The Theory Of Classical Nucleation, David Vallet May 2023

Simulating Condensation In The Theory Of Classical Nucleation, David Vallet

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this thesis is to numerically investigate condensation that occurs in transonic and supersonic flows. Condensation shocks are a phenomenon that occurs within converging-diverging nozzles. There are many applications forconverging-diverging nozzles, such as thermovapour compressors (TVC), which are largely used for desalination. As water resources become more precious within the western United States there is a need to develop cost effective solutions for cleaning water. Steam generator power stations are another application where enhanced simulations and accuracy of design could improve efficiency and save on carbon emissions. Traditionally, numerical designs of transonic flows have been conducted with either …


Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula May 2020

Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this project is to numerically and experimentally dry cooling process in air-cooled condensers (ACCs) designed for concentrated solar power (CSP) applications. This effort is driven by the growing economic and political pressure to reduce water consumption during power generation due to limited water resources in the arid geographic climate of the southwestern United States. A computational approach is used in conjunction with experimental validation to gain a more complete understanding of these systems.

Traditionally research into ACCs have been largely limited to air-side heat transfer modelling as it accounts for a large portion of the total thermal …


Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett Dec 2019

Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett

UNLV Theses, Dissertations, Professional Papers, and Capstones

Supercritical carbon dioxide (sCO2) is currently being studied as the working fluid in power producing Brayton cycles due to its excellent physical and thermodynamic properties, especially near the critical point. Printed circuit heat exchangers (PCHEs) are being considered for use as condensers and recuperators for this purpose due to their high strength and compact designs. Many experimental and numerical studies are being conducted to characterize and optimize sCO2 PCHE operation and develop correlations to describe their thermal-hydraulic performance. Additionally, a few experimental and numerical structural assessments of these PCHEs have been conducted, but all have been somewhat limited due to …


Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan May 2019

Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Reactor fuel rod bundles serve as the primary heat source in light water reactors (LWRs), commonly found in the aforementioned PWR plants. The fuel rod bundles’ structure consists of a collection of fuel rods put into a parallel grid configuration. The bundles also include fuel rod spacers, which hold the fuel rods in place, in accordance with the grid. Repeating structures of the fuel bundles create the meta-structure in the reactor. In other words, the grid configuration repeats until it fills the entire space of the reactor. This results in reactor fuel rods suspended in the working fluid domain, oriented …


Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill May 2019

Numerical Analysis And Fluid Flow Modeling Of Incompressible Navier-Stokes Equations, Tahj Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Navier-Stokes equations (NSE) are an essential set of partial differential equations for governing the motion of fluids. In this paper, we will study the NSE for an incompressible flow, one which density ρ = ρ0 is constant.

First, we will present the derivation of the NSE and discuss solutions and boundary conditions for the equations. We will then discuss the Reynolds number, a dimensionless number that is important in the observations of fluid flow patterns. We will study the NSE at various Reynolds numbers, and use the Reynolds number to write the NSE in a nondimensional form.

We will …


Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar May 2019

Assessing Simulated Transmissivity In Numerical Flow Models Of Complex Hydrogeology, Afan Tarar

UNLV Theses, Dissertations, Professional Papers, and Capstones

Accurately extracting a meaningful transmissivity, a target value within one order of magnitude of field estimates, in numerical models poses a significant challenge when modeling complex groundwater systems. Aquifer transmissivity is directly proportional to the aquifer thickness and the estimated aquifer hydraulic conductivity. In complex geologic conditions (especially in fractured systems) with multiple heterogeneous and anisotropic hydrogeologic units, transmissivity can vary over several orders of magnitude.

To extract a meaningful value of transmissivity from a numerical model, a simple five-layer MODFLOW model was constructed. Each layer in the model was assigned a fixed hydraulic conductivity and thickness. The model simulates …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman Dec 2014

Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Inviscid flow theory governs the bulk motion of a gas at some distance away from the walls (i.e. outside the boundary layer). That is to say, there are no viscous forces in the bulk flow, which is modeled using the Euler equations. The Euler equations are simply the Navier-Stokes equations with zero viscosity terms. An ideal inviscid fluid, when brought into contact with a surface or wall, would naturally slip right past it since the fluid has no viscosity. In real life, however, a thin boundary layer forms between the wall or surface and the bulk flow. Shock wave boundary …


Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon May 2012

Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon

UNLV Theses, Dissertations, Professional Papers, and Capstones

There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid …