Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics

Utah State University

Theses/Dissertations

2017

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver Dec 2017

A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

It is known that the aerodynamic center changes from quarter chord to half chord from incompressible to compressible flows on airfoils. Compressible corrections are derived and implemented in a vortex panel code. These results will be used to find the aerodynamic centers for the specified Mach range of 0.1 to 0.8 in 0.1 increments within - 6 to 6 degrees angle of attack. OpenFOAM 5 cases will be created with specific meshes and settings. The results calculated from OpenFOAM 5 will be compared to the results obtained from the compressible corrections.


Application Of Strand-Cartesian Interfaced Solver On Flows Around Various Geometries, Yushi Yanagita May 2017

Application Of Strand-Cartesian Interfaced Solver On Flows Around Various Geometries, Yushi Yanagita

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

This work examines the application of a high-order numerical method to strand-based grids to solve the Navier-Stokes equations. Coined "Flux Correction", this method eliminates error terms in the fluxes of traditional second-order finite volume Galerkin methods. Flux Correction is first examined for applications to the Reynolds-Averaged Navier-Stokes equations to compute turbulent flows on a strictly strand-based domain. Flow over three geometries are examined to demonstrate the method’s capabilities: a three-dimensional bump, an infinite wing, and a hemisphere-cylinder configuration. Comparison to results obtained from established codes show that the turbulent Flux Correction scheme accurately predicts flow properties such as pressure, velocity …