Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Aeolian Simulations: A Comparison Of Numerical And Experimental Results, With Projections For Titan., Oscar Lee Mathews Dec 2011

Aeolian Simulations: A Comparison Of Numerical And Experimental Results, With Projections For Titan., Oscar Lee Mathews

Masters Theses

Aeolian processes are major determinants of geomorphology on bodies in the Solar System possessing an atmosphere-surface interface and transportable sediment, including Earth, Mars, Venus, and Titan. Substantial efforts have been made over the last few decades to understand these processes using specialized wind tunnels, field studies, and, more recently, numerical simulations. This thesis describes a model of aeolian sediment transport using computational fluid dynamics (CFD), and compares the results with those obtained in the Martian Surface Wind Tunnel (MARSWIT) testing conducted in the Planetary Aeolian Laboratory at NASA Ames Research Center. The ultimate goal of the thesis was to develop …


The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson Aug 2011

The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson

Doctoral Dissertations

State of the art research in hydrodynamic stability analysis has moved from classic one-dimensional methods such as the local nonparallel approach and the parabolized stability equations to two-dimensional, biglobal, methods. The paradigm shift toward two dimensional techniques with the ability to accommodate fully three-dimensional base flows is a necessary step toward modeling complex, multidimensional flowfields in modern propulsive applications. Here, we employ a two-dimensional spatial waveform with sinusoidal temporal dependence to reduce the three-dimensional linearized Navier-Stokes equations to their biglobal form. Addressing hydrodynamic stability in this way circumvents the restrictive parallel-flow assumption and admits boundary conditions in the streamwise direction. …


Applications Of Nanoparticle Image Velocimetry In Nanofluids, Sara Salim Haque Aug 2011

Applications Of Nanoparticle Image Velocimetry In Nanofluids, Sara Salim Haque

Masters Theses

Particle Image Velocimetry (PIV) is an optical technique used for the visualization of fluid flow. PIV can be combined with other techniques to enhance the analysis of fluid flow. A novel far-field plasmonic resonance enhanced nanoparticle-seeded Particle Image Velocimetry (nPIV) has been demonstrated to measure the velocity in a micro channel. Chemically synthesized silver nanoparticles have been used to seed the flow. By using Discrete Dipole Approximation (DDA), plasmonic resonance enhanced light scattering has been calculated for spherical silver nanoparticles with diameters ranging from 15 nm to 200 nm in two media: water and air. The diffraction-limited plasmonic resonance enhanced …


Experimental Results For Viscosity Measurements Performed On The International Space Station Using Drop Coalescence In Microgravity, Brian Michael Godfrey Aug 2011

Experimental Results For Viscosity Measurements Performed On The International Space Station Using Drop Coalescence In Microgravity, Brian Michael Godfrey

Masters Theses

Current commonly use viscosity measurement techniques cannot be used for all types of fluids. For fluids in the under cooled region a new method of measuring the viscosity is required. A process of viscosity measurement, by measuring the speed of droplet coalescence in a microgravity environment, was developed. This paper analyses validation experiments performed on the International Space Station. Four experiments were analyzed. Two of the experiments provided results consistent with the known value for the viscosity. One of the experiments did not provide sufficient data for analysis. The final experiment had possible errors due to the experimental setup. The …


Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni Aug 2011

Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni

Masters Theses

This study explores the variable speed operation and shift response of a prototype of a two speed single path CVT rotorcraft driveline system. Here a Comprehensive Variable Speed Rotorcraft Propulsion system Modeling (CVSRPM) tool is developed and utilized to simulate the drive system dynamics in steady forward speed condition. This investigation attempts to build upon previous variable speed rotorcraft propulsion studies by:

1) Including fully nonlinear first principles based transient gas-turbine engine model

2) Including shaft flexibility

3) Incorporating a basic flight dynamics model to account for interactions with the flight control system.

Through exploring the interactions between the various …


A Feasibility Study For Using Commercial Off The Shelf (Cots) Hardware For Meeting Nasa’S Need For A Commercial Orbital Transportation Services (Cots) To The International Space Station - [Cots]2, Chad Lee Davis Aug 2011

A Feasibility Study For Using Commercial Off The Shelf (Cots) Hardware For Meeting Nasa’S Need For A Commercial Orbital Transportation Services (Cots) To The International Space Station - [Cots]2, Chad Lee Davis

Masters Theses

The space vehicle system concept (i.e. resupply vehicle) described is based on the new direction that President George W. Bush announced on January 14, 2004 for NASA’s Human Exploration, which has the space shuttle retiring in 2011 following the completion of the International Space Station (ISS). This leads to a problem for the ISS community regarding the capability of meeting a sixty metric-ton cargo shortfall in resupply and the ability of returning large payloads, experiment racks and any other items too large to fit into a crew only type spacecraft like the Orion or Soyuz. NASA and the ISS partners …


Vortex Driven Acoustic Flow Instability, Lutz Blaette May 2011

Vortex Driven Acoustic Flow Instability, Lutz Blaette

Doctoral Dissertations

Most combustion machines feature internal flows with very high energy densities. If a small fraction of the total energy contained in the flow is diverted into oscillations, large mechanical or thermal loads on the structure can be the result, which are potentially devastating if not predicted correctly. This is particularly the case for lightweight high performing devices like rockets. The problem is commonly known as "Combustion Instability".
Several mechanisms have been identified in the past that link the flow field to the acoustics inside a combustion chamber and thereby drive or dampen oscillations, one of them being vortex shedding.

The …


Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice May 2011

Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice

Doctoral Dissertations

Combustion instability is a problem that has plagued the development of rocket-propelled devices since their conception. It is characterized by the occurrence of high-frequency nonlinear gas oscillations inside the combustion chamber. This phenomenon degrades system performance and can result in damage to both structure and instrumentation.

The goal of this dissertation is to clarify the role of unsteady combustion in the combustor instability problem by providing the first quantified estimates of its effect upon the stability of liquid rocket engines. The combination of this research with a new system energy balance method, accounting for all dynamic interactions within a system, …


Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley May 2011

Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley

Masters Theses

Accurate measurement of turbine engine compressor inlet total temperature is paramount for controlling engine speed and pressure ratio. Various methods exist for measuring compressor inlet total temperature on turbojet engines with hydromechanical control. One method involves the use of an ejector-diffuser system (eductor) to pull air from the engine inlet in order to measure the incoming total temperature. Analysis of historical test data has revealed that the inlet temperature measurement can be biased at certain flight conditions causing engine mis-scheduling and off-nominal engine operation. This bias is characterized primarily by adverse heat transfer effects and secondly by poor flow quality …


Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock May 2011

Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock

Masters Theses

Cross flow heat exchangers are a fairly common apparatus employed throughout many industrial processes. For these types of systems, correlations have been extensively developed. However, there have been no correlations done for very high enthalpy flows as produced by Arnold Engineering Development Center’s (AEDC) H2 facility. The H2 facility uses a direct current electric arc to heat air which is then expanded through a converging-diverging nozzle to impart a supersonic velocity to the air. This high enthalpy, high temperature air must be cooled downstream by the use of a cross flow heat exchanger.

It is of interest to evaluate the …