Open Access. Powered by Scholars. Published by Universities.®

Education Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Education

Using Contrasting Cases To Build Metacognitive Knowledge About The Impact Of Salient Distracting Features In Physics Problems, Thanh K. Le Aug 2017

Using Contrasting Cases To Build Metacognitive Knowledge About The Impact Of Salient Distracting Features In Physics Problems, Thanh K. Le

Electronic Theses and Dissertations

Student reasoning on physics problems is often context dependent. A possible explanation is that salient distracting features (SDFs) in physics problems may cue students’ “spontaneous” reasoning. This cued reasoning is often accepted without question, even though it may be unproductive and may even preclude the use of relevant knowledge. One possible approach to address such reasoning difficulties is to strengthen students’ metacognitive skills, particularly their metacognitive knowledge. While metacognitive knowledge plays an important role in facilitating effective regulation, little is known about how to build student metacognitive knowledge. This dissertation explores the use of contrasting cases (e.g., a …


Contrast Dependent Knowledge Development In Contrast Supported Scientific Observation, Maura B. Foley Aug 2017

Contrast Dependent Knowledge Development In Contrast Supported Scientific Observation, Maura B. Foley

Electronic Theses and Dissertations

Knowledge of contrasts between phenomena can influence how people think and reason about them, so learning contrasts is important in school science. Building knowledge through a process of construction is a common framework through which school science is taught. However, telling phenomena apart through differentiation also plays an important role in learning and may be underused as a teaching framework. An effective way to learn contrasts is to use them to perceptually differentiate similar-looking phenomena presented side-by-side. However, little is known about the persistence/usefulness of knowledge generated during perceptual differentiation over short periods of time and its usage in student …


Investigating Student Learning Of Analog Electronics, Kevin L. Van De Bogart May 2017

Investigating Student Learning Of Analog Electronics, Kevin L. Van De Bogart

Electronic Theses and Dissertations

Instruction in analog electronics is an integral component of many physics and engineering programs, and is typically covered in courses beyond the first year. While extensive research has been conducted on student understanding of introductory electric circuits, to date there has been relatively little research on student learning of analog electronics in either physics or engineering courses. Given the significant overlap in content of courses offered in both disciplines, this study seeks to strengthen the research base on the learning and teaching of electric circuits and analog electronics via a single, coherent investigation spanning both physics and engineering courses.

This …