Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

The Proofreading Exonuclease Subunit E Of Escherichia Coli Dna Polymerase Iii Is Tethered To The Polymerase Subunit A Via A Flexible Linker, Kiyoshi Ozawa, Slobodan Jergic, Ah-Young Park, Nicholas E. Dixon, Gottfried Otting Jul 2013

The Proofreading Exonuclease Subunit E Of Escherichia Coli Dna Polymerase Iii Is Tethered To The Polymerase Subunit A Via A Flexible Linker, Kiyoshi Ozawa, Slobodan Jergic, Ah-Young Park, Nicholas E. Dixon, Gottfried Otting

Professor Nick E Dixon

Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the α-subunit. The ε-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to α via a segment of 57 additional C-terminal residues, and also to θ, whose function is less well defined. The present study shows that θ greatly enhances the solubility of ε during cell-free synthesis. In addition, synthesis of ε in the presence of θ and α resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. …


Proofreading Exonuclease On A Tether: The Complex Between The E. Coli Dna Polymerase Iii Subunits Α, Ε, Θ And Β Reveals A Highly Flexible Arrangement Of The Proofreading Domain, Kiyoshi Ozawa, Nicholas P. Horan, Andrew Robinson, Hiromasa Yagi, Flynn R. Hill, Slobodan Jergic, Zhi-Qiang Xu, Karin V. Loscha, Nan Li, Moeava Tehei, Aaron J. Oakley, Gottfried Otting, Thomas Huber, Nicholas E. Dixon Jul 2013

Proofreading Exonuclease On A Tether: The Complex Between The E. Coli Dna Polymerase Iii Subunits Α, Ε, Θ And Β Reveals A Highly Flexible Arrangement Of The Proofreading Domain, Kiyoshi Ozawa, Nicholas P. Horan, Andrew Robinson, Hiromasa Yagi, Flynn R. Hill, Slobodan Jergic, Zhi-Qiang Xu, Karin V. Loscha, Nan Li, Moeava Tehei, Aaron J. Oakley, Gottfried Otting, Thomas Huber, Nicholas E. Dixon

Professor Nick E Dixon

A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. …