Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Social and Behavioral Sciences

Are There Place Cells In The Avian Hippocampus?, David F Sherry, Stephanie L Grella, Mélanie F Guigueno, David J White, Diano F Marrone Jan 2017

Are There Place Cells In The Avian Hippocampus?, David F Sherry, Stephanie L Grella, Mélanie F Guigueno, David J White, Diano F Marrone

Brain and Mind Institute Researchers' Publications

Birds possess a hippocampus that serves many of the same spatial and mnemonic functions as the mammalian hippocampus but achieves these outcomes with a dramatically different neuroanatomical organization. The properties of spatially responsive neurons in birds and mammals are also different. Much of the contemporary interest in the role of the mammalian hippocampus in spatial representation dates to the discovery of place cells in the rat hippocampus. Since that time, cells that respond to head direction and cells that encode a grid-like representation of space have been described in the rat brain. Research with homing pigeons has discovered hippocampal cells, …


Are There Place Cells In The Avian Hippocampus?, David F Sherry, Stephanie L Grella, Mélanie F Guigueno, David J White, Diano F Marrone Jan 2017

Are There Place Cells In The Avian Hippocampus?, David F Sherry, Stephanie L Grella, Mélanie F Guigueno, David J White, Diano F Marrone

Psychology Publications

Birds possess a hippocampus that serves many of the same spatial and mnemonic functions as the mammalian hippocampus but achieves these outcomes with a dramatically different neuroanatomical organization. The properties of spatially responsive neurons in birds and mammals are also different. Much of the contemporary interest in the role of the mammalian hippocampus in spatial representation dates to the discovery of place cells in the rat hippocampus. Since that time, cells that respond to head direction and cells that encode a grid-like representation of space have been described in the rat brain. Research with homing pigeons has discovered hippocampal cells, …


A Selective Impairment Of Perception Of Sound Motion Direction In Peripheral Space: A Case Study., Lore Thaler, Joseph Paciocco, Mark Daley, Gabriella D Lesniak, David W Purcell, J Alexander Fraser, Gordon N Dutton, Stephanie Rossit, Melvyn A Goodale, Jody C Culham Jan 2016

A Selective Impairment Of Perception Of Sound Motion Direction In Peripheral Space: A Case Study., Lore Thaler, Joseph Paciocco, Mark Daley, Gabriella D Lesniak, David W Purcell, J Alexander Fraser, Gordon N Dutton, Stephanie Rossit, Melvyn A Goodale, Jody C Culham

Brain and Mind Institute Researchers' Publications

It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in …


Sharp Emergence Of Feature-Selective Sustained Activity Along The Dorsal Visual Pathway., Diego Mendoza-Halliday, Santiago Torres, Julio C Martinez-Trujillo Sep 2014

Sharp Emergence Of Feature-Selective Sustained Activity Along The Dorsal Visual Pathway., Diego Mendoza-Halliday, Santiago Torres, Julio C Martinez-Trujillo

Brain and Mind Institute Researchers' Publications

Sustained activity encoding visual working memory representations has been observed in several cortical areas of primates. Where along the visual pathways this activity emerges remains unknown. Here we show in macaques that sustained spiking activity encoding memorized visual motion directions is absent in direction-selective neurons in early visual area middle temporal (MT). However, it is robustly present immediately downstream, in multimodal association area medial superior temporal (MST), as well as and in the lateral prefrontal cortex (LPFC). This sharp emergence of sustained activity along the dorsal visual pathway suggests a functional boundary between early visual areas, which encode sensory inputs, …


Human Premotor Areas Parse Sequences Into Their Spatial And Temporal Features., Katja Kornysheva, Jörn Diedrichsen Aug 2014

Human Premotor Areas Parse Sequences Into Their Spatial And Temporal Features., Katja Kornysheva, Jörn Diedrichsen

Brain and Mind Institute Researchers' Publications

Skilled performance is characterized by precise and flexible control of movement sequences in space and time. Recent theories suggest that integrated spatio-temporal trajectories are generated by intrinsic dynamics of motor and premotor networks. This contrasts with behavioural advantages that emerge when a trained spatial or temporal feature of sequences is transferred to a new spatio-temporal combination arguing for independent neural representations of these sequence features. We used a new fMRI pattern classification approach to identify brain regions with independent vs integrated representations. A distinct regional dissociation within motor areas was revealed: whereas only the contralateral primary motor cortex exhibited unique …


Prefrontal Neurons Of Opposite Spatial Preference Display Distinct Target Selection Dynamics., Therese Lennert, Julio C Martinez-Trujillo May 2013

Prefrontal Neurons Of Opposite Spatial Preference Display Distinct Target Selection Dynamics., Therese Lennert, Julio C Martinez-Trujillo

Brain and Mind Institute Researchers' Publications

Neurons in the primate dorsolateral prefrontal cortex (dlPFC) of one hemisphere are selective for the location of attended targets in both visual hemifields. Whether dlPFC neurons with selectivity for opposite hemifields directly compete with each other for target selection or instead play distinct roles during the allocation of attention remains unclear. We explored this issue by recording neuronal responses in the right dlPFC of two macaques while they allocated attention to a target in one hemifield and ignored a distracter on the opposite side. Forty-nine percent of the recorded neurons were target location selective. Neurons selective for contralateral targets (58%) …


Human Parietal "Reach Region" Primarily Encodes Intrinsic Visual Direction, Not Extrinsic Movement Direction, In A Visual Motor Dissociation Task., Juan Fernandez-Ruiz, Herbert C Goltz, Joseph F X Desouza, Tutis Vilis, J Douglas Crawford Oct 2007

Human Parietal "Reach Region" Primarily Encodes Intrinsic Visual Direction, Not Extrinsic Movement Direction, In A Visual Motor Dissociation Task., Juan Fernandez-Ruiz, Herbert C Goltz, Joseph F X Desouza, Tutis Vilis, J Douglas Crawford

Brain and Mind Institute Researchers' Publications

Posterior parietal cortex (PPC) participates in the planning of visuospatial behaviors, including reach movements, in gaze-centered coordinates. It is not known if these representations encode the visual goal in retinal coordinates, or the movement direction relative to gaze. Here, by dissociating the intrinsic retinal stimulus from the extrinsic direction of movement, we show that PPC employs a visual code. Using delayed pointing and event-related functional magnetic resonance imaging, we identified a cluster of PPC regions whose activity was topographically (contralaterally) related to the direction of the planned movement. We then switched the normal visual-motor spatial relationship by adapting subjects to …


Gaze-Centered Updating Of Visual Space In Human Parietal Cortex., W Pieter Medendorp, Herbert C Goltz, Tutis Vilis, J Douglas Crawford Jul 2003

Gaze-Centered Updating Of Visual Space In Human Parietal Cortex., W Pieter Medendorp, Herbert C Goltz, Tutis Vilis, J Douglas Crawford

Brain and Mind Institute Researchers' Publications

Single-unit recordings have identified a region in the posterior parietal cortex (PPC) of the monkey that represents and updates visual space in a gaze-centered frame. Here, using event-related functional magnetic resonance imaging, we identified an analogous bilateral region in the human PPC that shows contralateral topography for memory-guided eye movements and arm movements. Furthermore, when eye movements reversed the remembered horizontal target location relative to the gaze fixation point, this PPC region exchanged activity across the two cortical lobules. This shows that the human PPC dynamically updates the spatial goals for action in a gaze-centered frame.


Eye Position Signal Modulates A Human Parietal Pointing Region During Memory-Guided Movements., J F Desouza, S P Dukelow, J S Gati, R S Menon, R A Andersen, T Vilis Aug 2000

Eye Position Signal Modulates A Human Parietal Pointing Region During Memory-Guided Movements., J F Desouza, S P Dukelow, J S Gati, R S Menon, R A Andersen, T Vilis

Brain and Mind Institute Researchers' Publications

Using functional magnetic resonance imaging, we examined the signal in parietal regions that were selectively activated during delayed pointing to flashed visual targets and determined whether this signal was dependent on the fixation position of the eyes. Delayed pointing activated a bilateral parietal area in the intraparietal sulcus (rIPS), rostral/anterior to areas activated by saccades. During right-hand pointing to centrally located targets, the left rIPS region showed a significant increase in activation when the eye position was rightward compared with leftward. As expected, activation in motor cortex showed no modulation when only eye position changed. During pointing to retinotopically identical …


Fornix Lesions Can Facilitate Acquisition Of The Transverse Patterning Task: A Challenge For "Configural" Theories Of Hippocampal Function., T J Bussey, E Clea Warburton, J P Aggleton, J L Muir Feb 1998

Fornix Lesions Can Facilitate Acquisition Of The Transverse Patterning Task: A Challenge For "Configural" Theories Of Hippocampal Function., T J Bussey, E Clea Warburton, J P Aggleton, J L Muir

Brain and Mind Institute Researchers' Publications

Configural theories of hippocampal function predict that hippocampal dysfunction should impair acquisition of the transverse patterning task, which involves the concurrent solution of three discrimination problems: A+ versus B-; B+ versus C-; and C+ versus A-. The present study tested this prediction in rats using computer-graphic stimuli presented on a touchscreen. Experiment 1 assessed the effects of fornix lesions when the three problems were introduced sequentially (phase 1: A+ vs B-; phase 2: A+ vs B-, B+ vs C-; phase 3: A+ vs B-, B+ vs C-, C+ vs A-). Fornix lesions significantly facilitated acquisition of the complete transverse patterning …