Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Faculty Publications

Neural networks

Articles 1 - 4 of 4

Full-Text Articles in Social and Behavioral Sciences

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …


Year-Independent Prediction Of Food Insecurity Using Classical & Neural Network Machine Learning Methods, Caleb Christiansen, Torrey J. Wagner, Brent Langhals May 2021

Year-Independent Prediction Of Food Insecurity Using Classical & Neural Network Machine Learning Methods, Caleb Christiansen, Torrey J. Wagner, Brent Langhals

Faculty Publications

Current food crisis predictions are developed by the Famine Early Warning System Network, but they fail to classify the majority of food crisis outbreaks with model metrics of recall (0.23), precision (0.42), and f1 (0.30). In this work, using a World Bank dataset, classical and neural network (NN) machine learning algorithms were developed to predict food crises in 21 countries. The best classical logistic regression algorithm achieved a high level of significance (p < 0.001) and precision (0.75) but was deficient in recall (0.20) and f1 (0.32). Of particular interest, the classical algorithm indicated that the vegetation index and the food price index were both positively correlated with food crises. A novel method for performing an iterative multidimensional hyperparameter search is presented, which resulted in significantly improved performance when applied to this dataset. Four iterations were conducted, which resulted in excellent 0.96 for metrics of precision, recall, and f1. Due to this strong performance, the food crisis year was removed from the dataset to prevent immediate extrapolation when used on future data, and the modeling process was repeated. The best “no year” model metrics remained strong, achieving ≥0.92 for recall, precision, and f1 while meeting a 10% f1 overfitting threshold on the test (0.84) and holdout (0.83) datasets. The year-agnostic neural network model represents a novel approach to classify food crises and outperforms current food crisis prediction efforts.


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


A Memory-Based Approach To Cantonese Tone Recognition, Deryle W. Lonsdale, Michael Emonts Jan 2003

A Memory-Based Approach To Cantonese Tone Recognition, Deryle W. Lonsdale, Michael Emonts

Faculty Publications

This paper introduces memory-based learning as a viable approach for Cantonese tone recognition. The memorybased learning algorithm employed here outperforms other documented current approaches for this problem, which is based on neural networks. Various numbers of tones and features are modeled to find the best method for feature selection and extraction. To further optimize this approach, experiments are performed to isolate the best feature weighting method, the best class voting weights method, and the best number of k-values to implement. Results and possible future work are discussed.