Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Conference

MODVIS Workshop

Visual search

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

Learning Object Representations For Modeling Attention In Real World Scenes, Alex Schwarz, Frederik Beuth, Fred H. Hamker May 2016

Learning Object Representations For Modeling Attention In Real World Scenes, Alex Schwarz, Frederik Beuth, Fred H. Hamker

MODVIS Workshop

Models of visual attention have been rarely used in real world tasks as they have been typically developed for psychophysical setups using simple stimuli. Thus, the question remains how objects must be represented to allow such models an operation in real world scenarios. We have previously presented an attention model capable of operating on real-world scenes (Beuth, F., and Hamker, F. H. 2015, NCNC, which is a successor of Hamker, F. H., 2005, Cerebral Cortex), and show here how its object representations have been learned. We have used a learning rule based on temporal continuity (Földiák, P., 1991, Neural Computation) …


Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker May 2015

Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker

MODVIS Workshop

Visual attention models can explain a rich set of physiological data (Reynolds & Heeger, 2009, Neuron), but can rarely link these findings to real-world tasks. Here, we would like to narrow this gap with a novel, physiologically grounded model of visual attention by demonstrating its objects recognition abilities in noisy scenes.

To base the model on physiological data, we used a recently developed microcircuit model of visual attention (Beuth & Hamker, in revision, Vision Res) which explains a large set of attention experiments, e.g. biased competition, modulation of contrast response functions, tuning curves, and surround suppression. Objects are represented by …