Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Family, Life Course, and Society

University of Kentucky

Microglia

Articles 1 - 14 of 14

Full-Text Articles in Social and Behavioral Sciences

Retention Of Normal Glia Function By An Isoform-Selective Protein Kinase Inhibitor Drug Candidate That Modulates Cytokine Production And Cognitive Outcomes, Zhengqiu Zhou, Adam D. Bachstetter, Claudia B. Späni, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik Apr 2017

Retention Of Normal Glia Function By An Isoform-Selective Protein Kinase Inhibitor Drug Candidate That Modulates Cytokine Production And Cognitive Outcomes, Zhengqiu Zhou, Adam D. Bachstetter, Claudia B. Späni, Saktimayee M. Roy, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Background: Brain p38α mitogen-activated protein kinase (MAPK), a potential therapeutic target for cognitive dysfunction based on the neuroinflammation-synaptic dysfunction cycle of pathophysiology progression, offers an innovative pharmacological strategy via inhibiting the same activated target in both glia and neurons, thereby enhancing the possibility for efficacy. The highly selective, brain-penetrant p38αMAPK inhibitor MW150 attenuates cognitive dysfunction in two distinct Alzheimer's disease (AD)-relevant models and avoids the problems encountered with previous mixed-kinase inhibitor drug candidates. Therefore, it is essential that the glial effects of this CNS-active kinase inhibitor be addressed in order to anticipate future use in clinical investigations.

Methods: …


Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar Dec 2016

Selective Suppression Of The Α Isoform Of P38 Mapk Rescues Late-Stage Tau Pathology, Nicole Maphis, Shanya Jiang, Guixiang Xu, Olga N. Kokiko-Cochran, Saktimayee M. Roy, Linda J. Van Eldik, D. Martin Watterson, Bruce T. Lamb, Kiran Bhaskar

Sanders-Brown Center on Aging Faculty Publications

Background: Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer’s disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1.

Method: We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice.

Results: First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 …


Immunomodulators As Therapeutic Agents In Mitigating The Progression Of Parkinson's Disease, Bethany Grimmig, Josh Morganti, Kevin Nash, Paula C. Bickford Sep 2016

Immunomodulators As Therapeutic Agents In Mitigating The Progression Of Parkinson's Disease, Bethany Grimmig, Josh Morganti, Kevin Nash, Paula C. Bickford

Sanders-Brown Center on Aging Faculty Publications

Parkinson’s disease (PD) is a common neurodegenerative disorder that primarily afflicts the elderly. It is characterized by motor dysfunction due to extensive neuron loss in the substantia nigra pars compacta. There are multiple biological processes that are negatively impacted during the pathogenesis of PD, and are implicated in the cell death in this region. Neuroinflammation is evidently involved in PD pathology and mitigating the inflammatory cascade has been a therapeutic strategy. Age is the number one risk factor for PD and thus needs to be considered in the context of disease pathology. Here, we discuss the role of neuroinflammation within …


Reduced Efficacy Of Anti-AΒ Immunotherapy In A Mouse Model Of Amyloid Deposition And Vascular Cognitive Impairment Comorbidity, Erica M. Weekman, Tiffany L. Sudduth, Carly N. Caverly, Timothy J. Kopper, Oliver W. Phillips, David K. Powell, Donna M. Wilcock Sep 2016

Reduced Efficacy Of Anti-AΒ Immunotherapy In A Mouse Model Of Amyloid Deposition And Vascular Cognitive Impairment Comorbidity, Erica M. Weekman, Tiffany L. Sudduth, Carly N. Caverly, Timothy J. Kopper, Oliver W. Phillips, David K. Powell, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia behind Alzheimer's disease (AD). It is estimated that 40% of AD patients also have some form of VCID. One promising therapeutic for AD is anti-Aβ immunotherapy, which uses antibodies against Aβ to clear it from the brain. While successful in clearing Aβ and improving cognition in mice, anti-Aβ immunotherapy failed to reach primary cognitive outcomes in several different clinical trials. We hypothesized that one potential reason the anti-Aβ immunotherapy clinical trials were unsuccessful was due to this high percentage of VCID …


Mw151 Inhibited Il-1Β Levels After Traumatic Brain Injury With No Effect On Microglia Physiological Responses, Adam D. Bachstetter, Zhengqiu Zhou, Rachel K. Rowe, Bin Xing, Danielle S. Goulding, Alyssa N. Conley, Pradoldej Sompol, Shelby Meier, Jose F. Abisambra, Jonathan Lifshitz, D. Martin Watterson, Linda J. Van Eldik Feb 2016

Mw151 Inhibited Il-1Β Levels After Traumatic Brain Injury With No Effect On Microglia Physiological Responses, Adam D. Bachstetter, Zhengqiu Zhou, Rachel K. Rowe, Bin Xing, Danielle S. Goulding, Alyssa N. Conley, Pradoldej Sompol, Shelby Meier, Jose F. Abisambra, Jonathan Lifshitz, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

A prevailing neuroinflammation hypothesis is that increased production of proinflammatory cytokines contributes to progressive neuropathology, secondary to the primary damage caused by a traumatic brain injury (TBI). In support of the hypothesis, post-injury interventions that inhibit the proinflammatory cytokine surge can attenuate the progressive pathology. However, other post-injury neuroinflammatory responses are key to endogenous recovery responses. Therefore, it is critical that pharmacological attenuation of detrimental or dysregulated neuroinflammatory processes avoid pan-suppression of inflammation. MW151 is a CNS-penetrant, small molecule experimental therapeutic that restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis without immunosuppression. Post-injury administration of MW151 in a …


Time-Dependent Effects Of Cx3cr1 In A Mouse Model Of Mild Traumatic Brain Injury, Heidi Y. Febinger, Hannah E. Thomasy, Maria N. Pavlova, Kristyn M. Ringgold, Paulien R. Barf, Amrita M. George, Jenna N. Grillo, Adam D. Bachstetter, Jenny A. Garcia, Astrid E. Cardona, Mark R. Opp, Carmelina Gemma Sep 2015

Time-Dependent Effects Of Cx3cr1 In A Mouse Model Of Mild Traumatic Brain Injury, Heidi Y. Febinger, Hannah E. Thomasy, Maria N. Pavlova, Kristyn M. Ringgold, Paulien R. Barf, Amrita M. George, Jenna N. Grillo, Adam D. Bachstetter, Jenny A. Garcia, Astrid E. Cardona, Mark R. Opp, Carmelina Gemma

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases.

METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated …


Closed Head Injury In An Age-Related Alzheimer Mouse Model Leads To An Altered Neuroinflammatory Response And Persistent Cognitive Impairment, Scott J. Webster, Linda J. Van Eldik, D. Martin Watterson, Adam D. Bachstetter Apr 2015

Closed Head Injury In An Age-Related Alzheimer Mouse Model Leads To An Altered Neuroinflammatory Response And Persistent Cognitive Impairment, Scott J. Webster, Linda J. Van Eldik, D. Martin Watterson, Adam D. Bachstetter

Sanders-Brown Center on Aging Faculty Publications

Epidemiological studies have associated increased risk of Alzheimer's disease (AD)-related clinical symptoms with a medical history of head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is one outcome observed in patients after a single head injury. Neuroinflammation is also present early in relevant brain regions during AD pathology progression. In addition, previous mechanistic studies in animal models link neuroinflammation as a contributor to neuropathology and cognitive impairment in traumatic brain injury (TBI) or AD-related models. Therefore, we explored the potential interplay of neuroinflammatory responses in TBI and AD by analysis of the temporal …


Attenuation Of Traumatic Brain Injury-Induced Cognitive Impairment In Mice By Targeting Increased Cytokine Levels With A Small Molecule Experimental Therapeutic, Adam D. Bachstetter, Scott J. Webster, Danielle S. Goulding, Jonathan E. Morton, D. Martin Watterson, Linda J. Van Eldik Apr 2015

Attenuation Of Traumatic Brain Injury-Induced Cognitive Impairment In Mice By Targeting Increased Cytokine Levels With A Small Molecule Experimental Therapeutic, Adam D. Bachstetter, Scott J. Webster, Danielle S. Goulding, Jonathan E. Morton, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Evidence from clinical studies and preclinical animal models suggests that proinflammatory cytokine overproduction is a potential driving force for pathology progression in traumatic brain injury (TBI). This raises the possibility that selective targeting of the overactive cytokine response, a component of the neuroinflammation that contributes to neuronal dysfunction, may be a useful therapeutic approach. MW151 is a CNS-penetrant, small molecule experimental therapeutic that selectively restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis. We previously reported that MW151 administered post-injury (p.i.) is efficacious in a closed head injury (CHI) model of diffuse TBI in mice. Here we test …


The P38alpha Mitogen-Activated Protein Kinase Limits The Cns Proinflammatory Cytokine Response To Systemic Lipopolysaccharide, Potentially Through An Il-10 Dependent Mechanism, Adam D. Bachstetter, Bin Xing, Linda J. Van Eldik Oct 2014

The P38alpha Mitogen-Activated Protein Kinase Limits The Cns Proinflammatory Cytokine Response To Systemic Lipopolysaccharide, Potentially Through An Il-10 Dependent Mechanism, Adam D. Bachstetter, Bin Xing, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS.

METHODS: To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models …


Transition From An M1 To A Mixed Neuroinflammatory Phenotype Increases Amyloid Deposition In App/Ps1 Transgenic Mice, Erica M. Weekman, Tiffany L. Sudduth, Erin L. Abner, Gabriel J. Popa, Michael D. Mendenhall, Holly M. Brothers, Kaitlyn Braun, Abigail Greenstein, Donna M. Wilcock Jul 2014

Transition From An M1 To A Mixed Neuroinflammatory Phenotype Increases Amyloid Deposition In App/Ps1 Transgenic Mice, Erica M. Weekman, Tiffany L. Sudduth, Erin L. Abner, Gabriel J. Popa, Michael D. Mendenhall, Holly M. Brothers, Kaitlyn Braun, Abigail Greenstein, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: The polarization to different neuroinflammatory phenotypes has been described in early Alzheimer's disease, yet the impact of these phenotypes on amyloid-beta (Aβ) pathology remains unknown. Short-term studies show that induction of an M1 neuroinflammatory phenotype reduces Aβ, but long-term studies have not been performed that track the neuroinflammatory phenotype.

METHODS: Wild-type and APP/PS1 transgenic mice aged 3 to 4 months received a bilateral intracranial injection of adeno-associated viral (AAV) vectors expressing IFNγ or green fluorescent protein in the frontal cortex and hippocampus. Mice were sacrificed 4 or 6 months post-injection. ELISA measurements were used for IFNγ protein levels and …


Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik Jul 2012

Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that …


Microglial P38Α Mapk Is Critical For Lps-Induced Neuron Degeneration, Through A Mechanism Involving Tnfα, Bin Xing, Adam D. Bachstetter, Linda J. Van Eldik Dec 2011

Microglial P38Α Mapk Is Critical For Lps-Induced Neuron Degeneration, Through A Mechanism Involving Tnfα, Bin Xing, Adam D. Bachstetter, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: The p38α MAPK isoform is a well-established therapeutic target in peripheral inflammatory diseases, but the importance of this kinase in pathological microglial activation and detrimental inflammation in CNS disorders is less well understood. To test the role of the p38α MAPK isoform in microglia-dependent neuron damage, we used primary microglia from wild-type (WT) or p38α MAPK conditional knockout (KO) mice in co-culture with WT cortical neurons, and measured neuron damage after LPS insult.

RESULTS: We found that neurons in co-culture with p38α-deficient microglia were protected against LPS-induced synaptic loss, neurite degeneration, and neuronal death. The involvement of the proinflammatory …


Microglial P38Α Mapk Is A Key Regulator Of Proinflammatory Cytokine Up-Regulation Induced By Toll-Like Receptor (Tlr) Ligands Or Beta-Amyloid (Aβ), Adam D. Bachstetter, Bin Xing, Lucia De Almeida, Edgardo R. Dimayuga, D. Martin Watterson, Linda J. Van Eldik Jul 2011

Microglial P38Α Mapk Is A Key Regulator Of Proinflammatory Cytokine Up-Regulation Induced By Toll-Like Receptor (Tlr) Ligands Or Beta-Amyloid (Aβ), Adam D. Bachstetter, Bin Xing, Lucia De Almeida, Edgardo R. Dimayuga, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Overproduction of proinflammatory cytokines from activated microglia has been implicated as an important contributor to pathophysiology progression in both acute and chronic neurodegenerative diseases. Therefore, it is critical to elucidate intracellular signaling pathways that are significant contributors to cytokine overproduction in microglia exposed to specific stressors, especially pathways amenable to drug interventions. The serine/threonine protein kinase p38α MAPK is a key enzyme in the parallel and convergent intracellular signaling pathways involved in stressor-induced production of IL-1β and TNFα in peripheral tissues, and is a drug development target for peripheral inflammatory diseases. However, much less is known about the quantitative …


Cx3cl1 Reduces Neurotoxicity And Microglial Activation In A Rat Model Of Parkinson's Disease, Mibel M. Pabon, Adam D. Bachstetter, Charles E. Hudson, Carmelina Gemma, Paula C. Bickford Jan 2011

Cx3cl1 Reduces Neurotoxicity And Microglial Activation In A Rat Model Of Parkinson's Disease, Mibel M. Pabon, Adam D. Bachstetter, Charles E. Hudson, Carmelina Gemma, Paula C. Bickford

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson's disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS), and nitric oxide (NO). The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1), produced by neurons, suppresses the activation of microglia. CX3CL1 …