Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Family, Life Course, and Society

University of Kentucky

Amyloid beta-Peptides

Articles 1 - 10 of 10

Full-Text Articles in Social and Behavioral Sciences

Reduced Efficacy Of Anti-AΒ Immunotherapy In A Mouse Model Of Amyloid Deposition And Vascular Cognitive Impairment Comorbidity, Erica M. Weekman, Tiffany L. Sudduth, Carly N. Caverly, Timothy J. Kopper, Oliver W. Phillips, David K. Powell, Donna M. Wilcock Sep 2016

Reduced Efficacy Of Anti-AΒ Immunotherapy In A Mouse Model Of Amyloid Deposition And Vascular Cognitive Impairment Comorbidity, Erica M. Weekman, Tiffany L. Sudduth, Carly N. Caverly, Timothy J. Kopper, Oliver W. Phillips, David K. Powell, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia behind Alzheimer's disease (AD). It is estimated that 40% of AD patients also have some form of VCID. One promising therapeutic for AD is anti-Aβ immunotherapy, which uses antibodies against Aβ to clear it from the brain. While successful in clearing Aβ and improving cognition in mice, anti-Aβ immunotherapy failed to reach primary cognitive outcomes in several different clinical trials. We hypothesized that one potential reason the anti-Aβ immunotherapy clinical trials were unsuccessful was due to this high percentage of VCID …


AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer Feb 2016

AΒ40 Reduces P-Glycoprotein At The Blood-Brain Barrier Through The Ubiquitin-Proteasome Pathway, Anika M. S. Hartz, Yu Zhong, Andrea Wolf, Harry Levine Iii, David S. Miller, Björn Bauer

Sanders-Brown Center on Aging Faculty Publications

Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood–brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood–brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We …


Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers Ii: Sigma-2/Pgrmc1 Receptors Mediate Abeta 42 Oligomer Binding And Synaptotoxicity, Nicholas J. Izzo, Jinbin Xu, Chenbo Zeng, Molly J. Kirk, Kelsie Mozzoni, Colleen Silky, Courtney Rehak, Raymond Yurko, Gary Look, Gilbert Rishton, Hank Safferstein, Carlos Cruchaga, Alison Goate, Michael A. Cahill, Ottavio Arancio, Robert H. Mach, Rolf Craven, Elizabeth Head, Harry Levine Iii, Tara L. Spires-Jones, Susan M. Catalano Nov 2014

Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers Ii: Sigma-2/Pgrmc1 Receptors Mediate Abeta 42 Oligomer Binding And Synaptotoxicity, Nicholas J. Izzo, Jinbin Xu, Chenbo Zeng, Molly J. Kirk, Kelsie Mozzoni, Colleen Silky, Courtney Rehak, Raymond Yurko, Gary Look, Gilbert Rishton, Hank Safferstein, Carlos Cruchaga, Alison Goate, Michael A. Cahill, Ottavio Arancio, Robert H. Mach, Rolf Craven, Elizabeth Head, Harry Levine Iii, Tara L. Spires-Jones, Susan M. Catalano

Sanders-Brown Center on Aging Faculty Publications

Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic …


Alzheimer's Therapeutics Targeting Amyloid Beta 1-42 Oligomers I: Abeta 42 Oligomer Binding To Specific Neuronal Receptors Is Displaced By Drug Candidates That Improve Cognitive Deficits, Nicholas J. Izzo, Agnes Staniszewski, Lillian To, Mauro Fa, Andrew F. Teich, Faisal Saeed, Harrison Wostein, Thomas Walko Iii, Anisha Vaswani, Meghan Wardius, Zanobia Syed, Jessica Ravenscroft, Kelsie Mozzoni, Colleen Silky, Courtney Rehak, Raymond Yurko, Patricia Finn, Gary Look, Gilbert Rishton, Hank Safferstein, Miles Miller, Conrad Johanson, Edward Stopa, Manfred Windisch, Birgit Hutter-Paier, Mehrdad Shamloo, Ottavio Arancio, Harry Levine Iii, Susan M. Catalano Nov 2014

Alzheimer's Therapeutics Targeting Amyloid Beta 1-42 Oligomers I: Abeta 42 Oligomer Binding To Specific Neuronal Receptors Is Displaced By Drug Candidates That Improve Cognitive Deficits, Nicholas J. Izzo, Agnes Staniszewski, Lillian To, Mauro Fa, Andrew F. Teich, Faisal Saeed, Harrison Wostein, Thomas Walko Iii, Anisha Vaswani, Meghan Wardius, Zanobia Syed, Jessica Ravenscroft, Kelsie Mozzoni, Colleen Silky, Courtney Rehak, Raymond Yurko, Patricia Finn, Gary Look, Gilbert Rishton, Hank Safferstein, Miles Miller, Conrad Johanson, Edward Stopa, Manfred Windisch, Birgit Hutter-Paier, Mehrdad Shamloo, Ottavio Arancio, Harry Levine Iii, Susan M. Catalano

Sanders-Brown Center on Aging Faculty Publications

Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce …


Obesity And Diabetes Cause Cognitive Dysfunction In The Absence Of Accelerated Β-Amyloid Deposition In A Novel Murine Model Of Mixed Or Vascular Dementia, Dana M. Niedowicz, Valerie L. Reeves, Thomas L. Platt, Katharina Kohler, Tina L. Beckett, David K. Powell, Tiffany L. Lee, Travis R. Sexton, Eun Suk Song, Lawrence D. Brewer, Caitlin S. Latimer, Susan D. Kraner, Kara L. Larson, Sabire Özcan, Christopher M. Norris, Louis B. Hersh, Nada M. Porter, Donna M. Wilcock, Michael Paul Murphy Jun 2014

Obesity And Diabetes Cause Cognitive Dysfunction In The Absence Of Accelerated Β-Amyloid Deposition In A Novel Murine Model Of Mixed Or Vascular Dementia, Dana M. Niedowicz, Valerie L. Reeves, Thomas L. Platt, Katharina Kohler, Tina L. Beckett, David K. Powell, Tiffany L. Lee, Travis R. Sexton, Eun Suk Song, Lawrence D. Brewer, Caitlin S. Latimer, Susan D. Kraner, Kara L. Larson, Sabire Özcan, Christopher M. Norris, Louis B. Hersh, Nada M. Porter, Donna M. Wilcock, Michael Paul Murphy

Sanders-Brown Center on Aging Faculty Publications

Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer's disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small …


Intracranial Injection Of Gammagard, A Human Ivig, Modulates The Inflammatory Response Of The Brain And Lowers AΒ In App/Ps1 Mice Along A Different Time Course Than Anti-AΒ Antibodies, Tiffany L. Sudduth, Abigail Greenstein, Donna M. Wilcock Jun 2013

Intracranial Injection Of Gammagard, A Human Ivig, Modulates The Inflammatory Response Of The Brain And Lowers AΒ In App/Ps1 Mice Along A Different Time Course Than Anti-AΒ Antibodies, Tiffany L. Sudduth, Abigail Greenstein, Donna M. Wilcock

Sanders-Brown Center on Aging Faculty Publications

Gammagard IVIg is a therapeutic approach to treat Alzheimer's disease currently in phase 3 clinical trials. Despite the reported efficacy of the approach the mechanism of action is poorly understood. We have previously shown that intracranial injection of anti-Aβ antibodies into the frontal cortex and hippocampus reveals important information regarding the time course of events once the agent is in the brain. In the current study we compared IVIg, mouse-pooled IgG, and the anti-Aβ antibody 6E10 injected intracranially into the frontal cortex and hippocampus of 7-month-old APP/PS1 mice. We established a time course of events ranging from 1 …


Intracranial Injection Of Aav Expressing Nep But Not Ide Reduces Amyloid Pathology In App+Ps1 Transgenic Mice, Nikisha Carty, Kevin R. Nash, Milene Brownlow, Dana Cruite, Donna M. Wilcock, Maj-Linda B. Selenica, Daniel C. Lee, Marcia N. Gordon, Dave Morgan Mar 2013

Intracranial Injection Of Aav Expressing Nep But Not Ide Reduces Amyloid Pathology In App+Ps1 Transgenic Mice, Nikisha Carty, Kevin R. Nash, Milene Brownlow, Dana Cruite, Donna M. Wilcock, Maj-Linda B. Selenica, Daniel C. Lee, Marcia N. Gordon, Dave Morgan

Sanders-Brown Center on Aging Faculty Publications

The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer's disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombinant adeno-associated viral vectors expressing either native forms of NEP (NEP-n) or IDE (IDE-n), or engineered secreted forms of NEP (NEP-s) or IDE (IDE-s). In a six-week study, immunohistochemistry …


Activation Of Matrix Metalloproteinases Following Anti-Aβ Immunotherapy; Implications For Microhemorrhage Occurrence, Donna M. Wilcock, Dave Morgan, Marcia N. Gordon, Tiffany L. Taylor, Lisa A. Ridnour, David A. Wink, Carol A. Colton Sep 2011

Activation Of Matrix Metalloproteinases Following Anti-Aβ Immunotherapy; Implications For Microhemorrhage Occurrence, Donna M. Wilcock, Dave Morgan, Marcia N. Gordon, Tiffany L. Taylor, Lisa A. Ridnour, David A. Wink, Carol A. Colton

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD) currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s) by which they occur.

METHODS: We have examined the matrix metalloproteinase (MMP) protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which …


Microglial P38Α Mapk Is A Key Regulator Of Proinflammatory Cytokine Up-Regulation Induced By Toll-Like Receptor (Tlr) Ligands Or Beta-Amyloid (Aβ), Adam D. Bachstetter, Bin Xing, Lucia De Almeida, Edgardo R. Dimayuga, D. Martin Watterson, Linda J. Van Eldik Jul 2011

Microglial P38Α Mapk Is A Key Regulator Of Proinflammatory Cytokine Up-Regulation Induced By Toll-Like Receptor (Tlr) Ligands Or Beta-Amyloid (Aβ), Adam D. Bachstetter, Bin Xing, Lucia De Almeida, Edgardo R. Dimayuga, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Overproduction of proinflammatory cytokines from activated microglia has been implicated as an important contributor to pathophysiology progression in both acute and chronic neurodegenerative diseases. Therefore, it is critical to elucidate intracellular signaling pathways that are significant contributors to cytokine overproduction in microglia exposed to specific stressors, especially pathways amenable to drug interventions. The serine/threonine protein kinase p38α MAPK is a key enzyme in the parallel and convergent intracellular signaling pathways involved in stressor-induced production of IL-1β and TNFα in peripheral tissues, and is a drug development target for peripheral inflammatory diseases. However, much less is known about the quantitative …


Neuroprotective Action Of Cycloheximide Involves Induction Of Bcl-2 And Antioxidant Pathways, Katsutoshi Furukawa, Steven Estus, Weiming Fu, Robert J. Mark, Mark P. Mattson Mar 1997

Neuroprotective Action Of Cycloheximide Involves Induction Of Bcl-2 And Antioxidant Pathways, Katsutoshi Furukawa, Steven Estus, Weiming Fu, Robert J. Mark, Mark P. Mattson

Sanders-Brown Center on Aging Faculty Publications

The ability of the protein synthesis inhibitor cycloheximide (CHX) to prevent neuronal death in different paradigms has been interpreted to indicate that the cell death process requires synthesis of “killer” proteins. On the other hand, data indicate that neurotrophic factors protect neurons in the same death paradigms by inducing expression of neuroprotective gene products. We now provide evidence that in embryonic rat hippocampal cell cultures, CHX protects neurons against oxidative insults by a mechanism involving induction of neuroprotective gene products including the antiapoptotic gene bcl-2 and antioxidant enzymes. Neuronal survival after exposure to glutamate, FeSO4, and amyloid β-peptide …