Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Water quality

University of Nevada, Las Vegas

Biochemistry, Biophysics, and Structural Biology

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Interagency Lake Mead And Las Vegas Wash Monitoring Program: Standard Operating Procedures Manual, Bureau Of Reclamation, City Of Henderson Water Reclamation Facility, City Of Las Vegas Water Pollution Control Facility, Clark County Sanitation District, Nevada, Southern Nevada Water Authority Oct 1998

Interagency Lake Mead And Las Vegas Wash Monitoring Program: Standard Operating Procedures Manual, Bureau Of Reclamation, City Of Henderson Water Reclamation Facility, City Of Las Vegas Water Pollution Control Facility, Clark County Sanitation District, Nevada, Southern Nevada Water Authority

Publications (WR)

A number of agencies sample Lake Mead and the Las Vegas Wash on a routine basis at several locations. In order to share and properly interpret the data, the Bureau of Reclamation, Southern Nevada Water Authority and the three Wastewater Treatment Facilities (City of Las Vegas, Clark County Sanitation District and City of Henderson) formed a committee to examine sampling and analytical protocols and to share information with the goal of maximizing the data quality. The group first met in April 1997.

It was agreed that an effort should be made to discuss and compare specific sampling and analytical techniques …


Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey Apr 1997

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey

Publications (WR)

Las Vegas Wash, a natural wash east of the city of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from three sewage treatment plants to Lake Mead. The Wash provides nearly the only surface water outlet for the entire 2,193 mi2 of Las Vegas Valley. A drainage area of 1,586 mi2 contributes directly to the Wash through surface flow which is channeled to Las Vegas Bay of Lake Mead, while drainage of the remaining 607 mi2 is presumably subsurface and may drain toward Las Vegas Wash.

In the 1930's and 1940's, sewage treatment plants were …


Nutrient Limitation In A Southwestern Desert Reservoir: Eutrophication Of Las Vegas Bay, Lake Mead, Nevada, Davine M. Lieberman Sep 1995

Nutrient Limitation In A Southwestern Desert Reservoir: Eutrophication Of Las Vegas Bay, Lake Mead, Nevada, Davine M. Lieberman

Publications (WR)

Algal bioassay tests were conducted with Selenastrum capricornutum and natural algae on inner Las Vegas Bay, Lake Mead, Nevada, from December 1992 through September 1993, to identify any nutrient limitation in an area of the reservoir that has experienced problems associated with severe nutrient enrichment. Three areas were sampled based on a gradient of water quality conditions that existed in Las Vegas Bay (LVB). Disodium ethylenedinitrilotetraacetate (EDTA) significantly stimulated algal growth compared to non-EDTA treatment. Algal bioassays indicated that phosphorus (P) was the primary limiting nutrient at all stations for most of the test dates. Chl a response with EDTA …


Limnological Monitoring Data For Lake Mead During 1988, Suzanne E. Leavitt, Larry J. Paulson, State Of Nevada: Division Of Environmental Protection Apr 1989

Limnological Monitoring Data For Lake Mead During 1988, Suzanne E. Leavitt, Larry J. Paulson, State Of Nevada: Division Of Environmental Protection

Publications (WR)

Limnological monitoring was conducted in Las Vegas Bay and Boulder Basin from April to December of 1988. The purpose of the monitoring was to (i) document possible changes in water quality resulting from decreased phosphorus loading and increased ammonia in Las Vegas Wash, and (ii) establish a data base for evaluating the adequacy of water quality standards.


Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson Jan 1988

Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson

Publications (WR)

Limnological monitoring was conducted in Las Vegas Bay and Boulder Basin from April to December of 1987. The purpose of the monitoring was to (i) document possible changes in water quality resulting from decreased phosphorus loading in Las Vegas Wash, and (ii) establish a data base for evaluating the adequacy of water quality standards.


Changes In The Morphometry Of Las Vegas Wash And The Impact On Water Quality, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation Jan 1988

Changes In The Morphometry Of Las Vegas Wash And The Impact On Water Quality, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation

Publications (WR)

Las Vegas Wash, a natural wash east of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from two sewage treatment plants to Lake Mead. Over 80 percent of the normal discharge of approximately 3.4 m3/s (120 ft3/s) consists of effluent from the City of Las Vegas and Clark County sewage treatment plants. Beginning in the 1950s, a large wetland area developed along the wash that supported waterfowl populations and contributed to some water quality transformations. Heavy rains and subsequent flooding in the area in 1983 and 1984 resulted in erosion and channelization that greatly …


Raw Nutrient Data, Leanna Gail May 1987

Raw Nutrient Data, Leanna Gail

Publications (WR)

Data collected at various stations around Lake Mead. Includes information about substances present in various water samples.


Las Vegas Wash Advanced Water Quality Study: Final Report, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation Jan 1984

Las Vegas Wash Advanced Water Quality Study: Final Report, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation

Publications (WR)

The purpose of the Las Vegas Wash Advanced Water Quality Study is to determine the existence, extent, and mechanisms of nutrient and toxin stripping in Las Vegas Wash under present conditions and under future conditions, both with and without construction of the proposed salinity control unit as described by the Bureau of Reclamation (USBR, 1982b). This study was performed for the Lower Colorado Region Division of Planning by personnel of the Environmental Sciences Section of the Division of Research and Laboratory Services, E&R Center, Denver, Colorado. Work on the study began in February 1983.

The general approach adopted for this …


Effects Of Wastewater Discharges On Periphyton Growth In Lake Mead, Nevada-Arizona, Marsha Korb Morris Dec 1982

Effects Of Wastewater Discharges On Periphyton Growth In Lake Mead, Nevada-Arizona, Marsha Korb Morris

Publications (WR)

A study of the effects of secondary-treated wastewater on periphyton growth in Lake Mead, Nevada-Arizona was conducted from September 1979 to December 1980. Periphyton ash-free dry weight, chlorophyll-a, dominant species composition, and alkaline phosphatase activity were measured on fiberglass substrates. Substrates were incubated for two to four weeks in littoral and limnetic habitats. Physical and chemical variables and phytoplankton chlorophyll-a were measured concurrently.

Transparency increased with increasing distance from the discharge. Secchi depth ranged from 0.75 m at the discharge confluence (station 2) in August, to greater than 20 m at the most distant stations (stations 9 and 10) in …


Potential Use Of Hydroelectric Facilities For Manipulating The Fertility Of Lake Mead, Larry J. Paulson, John R. Baker, James E. Deacon Jan 1979

Potential Use Of Hydroelectric Facilities For Manipulating The Fertility Of Lake Mead, Larry J. Paulson, John R. Baker, James E. Deacon

Publications (WR)

Analysis of historical nutrient data for Lake Mead indicates that the fertility of the reservoir has decreased which may be the cause for a corresponding decline in the largemouth bass population. However, it appears that fertility can be manipulated by altering the operation of the dam. The depletion of nutrients in the euphotic zone by phytoplankton and subsequent accumulation in the hypolimnion during summer and fall provide a natural nutrient gradient from which water of varying fertility can be drawn for discharge. This combined with alterations in the depth or seasonal pattern of discharge can possibly be used to enhance …


Limnological Aspects Of Lake Mead, Nevada-Arizona, John R. Baker, James E. Deacon, Thomas A. Burke, Samuel S. Egdorf, Larry J. Paulson, Richard W. Tew, Bureau Of Reclamation Jun 1977

Limnological Aspects Of Lake Mead, Nevada-Arizona, John R. Baker, James E. Deacon, Thomas A. Burke, Samuel S. Egdorf, Larry J. Paulson, Richard W. Tew, Bureau Of Reclamation

Publications (WR)

Lake Mead is a deep, subtropical, moderately productive, desert impoundment with a negative heterograde oxygen profile occurring during; the summer stratification. investigations of the Boulder Basin of Lake Mead by the University of Nevada were initiated in November 1971. The primary objective of the study was to determine what effects industrial and sewage effluent from the Las Vegas metropolitan area, discharged into Las Vegas Bay, have had on the water quality and limnological conditions of Boulder Basin. Data from the 1975-76 period are presented in detail, with earlier data included in the summaries and discussions.

Measurements of water temperature, dissolved …


Phytoplankton Distribution And Water Quality Indices For Lake Mead (Colorado River), Robert D. Staker, Robert W. Hoshaw, Lorne G. Everett Jan 1974

Phytoplankton Distribution And Water Quality Indices For Lake Mead (Colorado River), Robert D. Staker, Robert W. Hoshaw, Lorne G. Everett

Publications (WR)

Phytoplankton samples were collected in Lake Mend 6 times from September 1910 to June 1971 for 8 stations at depths of 0. 3, 5, 10, 20, and 30 m. These samples were processed through a Millipore filter apparatus and 79 planktonic algae were identified. Algal divisions represented were Bacillariophyta, 42 species; Chlorophyta, 18 ; Cyanophyta, 9; Chrysophyta, 3; Cryptophyta, 3; Pyrrophyta, 2; and Euglenophyta, 2. Blue-green algae were dominant in late summer and fall; green algae, diatoms, and, cryptomonads in winter; and green algae in spring. The early summer flora was best represented by the Chlorophyta, Cryptophyta, and Chrysophyta. Palmer's …


Micronutrients And Biological Patterns In Lake Mead, Hasan K. Qashu, Lorne G. Everett, J. S. Carlson, Bureau Of Reclamation Jan 1971

Micronutrients And Biological Patterns In Lake Mead, Hasan K. Qashu, Lorne G. Everett, J. S. Carlson, Bureau Of Reclamation

Publications (WR)

Progressive increases in concentration of dissolved solids in the Colorado River water from Lake Powell to Imperial Dam seem to alter plankton dynamics and biological productivity of the river. Also, changes in biological productivity and micronutrients concentrations occur within the same reservoir. Development of a digital simulation model to predict micronutrients concentrations and biological productivity is necessary for diagnosing changes in plankton population and effluent-carrying capacity of the system.

The objectives of the study are: (1) to determine trace metal balance at different locations in Lake Mead, (2) to measure biological productivity and conduct plankton population counts at each sampling …


Comprehensive Survey Of Sedimentation In Lake Mead, 1948-49, W. O. Smith, C. P. Vetter, G. B. Cummings, U.S. Bureau Of Reclamation Jan 1960

Comprehensive Survey Of Sedimentation In Lake Mead, 1948-49, W. O. Smith, C. P. Vetter, G. B. Cummings, U.S. Bureau Of Reclamation

Publications (WR)

Reservoirs are becoming an increasingly prominent feature of the American landscape. Built for flood mitigation and to change a fluctuating river into a dependable source of water for irrigation, power, and other purposes, they are predestined, like natural lakes, to be destroyed sometime following their creation. Sedimentation sooner or later robs most lakes and reservoirs of their capacity to store water. The significance of sedimentation in the life of Lake Mead, the largest artificial reservoir in the world, was realized when the plan for the reservoir was conceived, and an aerial survey of the floor was made in 1935 before …