Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Supernovae

The University of San Francisco

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

On The Time Variation Of Dust Extinction And Gas Absorption For Type Ia Supernovae Observed Through A Nonuniform Interstellar Medium, Xiaosheng Huang, G Aldering, M. Biederman, B. Herger Nov 2017

On The Time Variation Of Dust Extinction And Gas Absorption For Type Ia Supernovae Observed Through A Nonuniform Interstellar Medium, Xiaosheng Huang, G Aldering, M. Biederman, B. Herger

Physics and Astronomy

For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures () will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent …


Lensed Type Ia Supernovae As Probes Of Cluster Mass Models, J Nordin, David Rubin, J Richard, E Rykoff, Greg Aldering, R Amanullah, H Atek, K Barbary, S Deustua, H K. Fakhouri, A S. Fruchter, A Goobar, I Hook, E Y. Hsiao, Xiaosheng Huang, J P. Kneib, C Lidman, J Meyers, S Perlmutter, C Saunders, A L. Spadafora, N Suzuki Apr 2014

Lensed Type Ia Supernovae As Probes Of Cluster Mass Models, J Nordin, David Rubin, J Richard, E Rykoff, Greg Aldering, R Amanullah, H Atek, K Barbary, S Deustua, H K. Fakhouri, A S. Fruchter, A Goobar, I Hook, E Y. Hsiao, Xiaosheng Huang, J P. Kneib, C Lidman, J Meyers, S Perlmutter, C Saunders, A L. Spadafora, N Suzuki

Physics and Astronomy

Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit …


The Hubble Space Telescope * Cluster Supernova Survey. Ii. The Type Ia Supernova Rate In High-Redshift Galaxy Clusters, K Barbary, G Aldering, R Amanullah, M Brodwin, N Connolly, Ks Dawson, M Doi, P Eisenhardt, L Faccioli, V Fadeyev, Hk Fakhouri, As Fruchter, D G. Gilbank, Md Gladders, G Goldhaber, A Goobar, T Hattori, E Hsiao, Xiaosheng Huang, Y Ihara, K Kashikawa, B Koester, K Konishi, M Kowalski, C Lidman, L Lubin, J Meyers, T Morokuma, T Oda, N Panagia, S Perlmutter, M Postman, P Ripoche, P Rosati, D Rubin, Dj Schlegel, Al Spadafora, Sa Stanford, M Strovink, N Suzuki, N Takanashi, K Tokita, N Yasuda Dec 2011

The Hubble Space Telescope * Cluster Supernova Survey. Ii. The Type Ia Supernova Rate In High-Redshift Galaxy Clusters, K Barbary, G Aldering, R Amanullah, M Brodwin, N Connolly, Ks Dawson, M Doi, P Eisenhardt, L Faccioli, V Fadeyev, Hk Fakhouri, As Fruchter, D G. Gilbank, Md Gladders, G Goldhaber, A Goobar, T Hattori, E Hsiao, Xiaosheng Huang, Y Ihara, K Kashikawa, B Koester, K Konishi, M Kowalski, C Lidman, L Lubin, J Meyers, T Morokuma, T Oda, N Panagia, S Perlmutter, M Postman, P Ripoche, P Rosati, D Rubin, Dj Schlegel, Al Spadafora, Sa Stanford, M Strovink, N Suzuki, N Takanashi, K Tokita, N Yasuda

Physics and Astronomy

We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50+0.23 –0.19 (stat) +0.10 –0.09 (sys) h 2 70 SNuB (SNuB ≡ 10–12 SNe L –1 ☉, B yr–1). In units of stellar mass, this translates to 0.36+0.16 –0.13 (stat) +0.07 –0.06 (sys) h 2 70 SNuM (SNuM ≡ 10–12 SNe M –1 ☉ yr–1). This represents a …