Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Electrodynamics

Series

2005

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Relativistic Electron Correlation, Quantum Electrodynamics, And The Lifetime Of The 1s²2s²2p²PO3/2 Level In Boronlike Argon, Alain Lapierre, Ulrich D. Jentschura, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Daniel A. Fischer, Antonio J. Gonzalez, Zoltan Harman, Walter Johnson, Christoph H. Keitel, Vladimir Sergeyevich Mironov, C. J. Osborne, Guenther Sikler, R. Soria Orts, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka Oct 2005

Relativistic Electron Correlation, Quantum Electrodynamics, And The Lifetime Of The 1s²2s²2p²PO3/2 Level In Boronlike Argon, Alain Lapierre, Ulrich D. Jentschura, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Daniel A. Fischer, Antonio J. Gonzalez, Zoltan Harman, Walter Johnson, Christoph H. Keitel, Vladimir Sergeyevich Mironov, C. J. Osborne, Guenther Sikler, R. Soria Orts, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka

Physics Faculty Research & Creative Works

The lifetime of the Ar13+ 1s22s22p2Po3/2 metastable level was determined at the Heidelberg Electron Beam Ion Trap to be 9.573(4)(5)ms(stat)(syst). The accuracy level of one per thousand makes this measurement sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM) and to relativistic electron-electron correlation effects like the frequency-dependent Breit interaction. Theoretical predictions, adjusted for the EAMM, cluster about a lifetime that is approximately 3σ shorter than our experimental result.


Complete Two-Loop Correction To The Bound-Electron Factor, Krzysztof Pachucki, Andrzej Czarnecki, Ulrich D. Jentschura, Vladimir A. Yerokhin Aug 2005

Complete Two-Loop Correction To The Bound-Electron Factor, Krzysztof Pachucki, Andrzej Czarnecki, Ulrich D. Jentschura, Vladimir A. Yerokhin

Physics Faculty Research & Creative Works

Within a systematic approach based on dimensionally regularized nonrelativistic quantum electrodynamics, we derive a complete result for the two-loop correction to order ( α/ π )2 ( Zα )4 for the g factor of an electron bound in an nS state of a hydrogenlike ion. The results obtained significantly improve the accuracy of the theoretical predictions for the hydrogenlike carbon and oxygen ions and influence the value of the electron mass inferred from g-factor measurements. D