Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Electrodynamics

Series

2003

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Perturbation Approach To The Self-Energy Of Non-S Hydrogenic States, Eric Olivier Le Bigot, Ulrich D. Jentschura, Peter J. Mohr, Paul Indelicato, Gerhard Soff Oct 2003

Perturbation Approach To The Self-Energy Of Non-S Hydrogenic States, Eric Olivier Le Bigot, Ulrich D. Jentschura, Peter J. Mohr, Paul Indelicato, Gerhard Soff

Physics Faculty Research & Creative Works

We present results on the self-energy correction to the energy levels of hydrogen and hydrogenlike ions. The self energy represents the largest QED correction to the relativistic (Dirac-Coulomb) energy of a bound electron. We focus on the perturbation expansion of the self energy of non-S states, and provide estimates of the so-called A60 perturbative coefficient, which can be considered as a relativistic Bethe logarithm. Precise values of A60 are given for many P, D, F and G states, while estimates are given for other electronic states. These results can be used in high-precision spectroscopy experiments in hydrogen and …


Asymptotic Properties Of Self-Energy Coefficients, Ulrich D. Jentschura, Eric Olivier Le Bigot, Peter J. Mohr, Paul Indelicato, Gerhard Soff Apr 2003

Asymptotic Properties Of Self-Energy Coefficients, Ulrich D. Jentschura, Eric Olivier Le Bigot, Peter J. Mohr, Paul Indelicato, Gerhard Soff

Physics Faculty Research & Creative Works

We investigate the asymptotic properties of higher-order binding corrections to the one-loop self-energy of excited states in atomic hydrogen. We evaluate the historically problematic A60 coefficient for all P states with principal quantum numbers n ≤ 7 and D states with n ≤ 8 and find that a satisfactory representation of the n dependence of the coefficients requires a three-parameter fit. For the high-energy contribution to A60, we find exact formulas. The results obtained are relevant for the interpretation of high-precision laser spectroscopic measurements.