Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey May 2023

Identifying And Analyzing Multi-Star Systems Among Tess Planetary Candidates Using Gaia, Katie E. Bailey

Electronic Theses and Dissertations

Exoplanets represent a young, rapidly advancing subfield of astrophysics where much is still unknown. It is therefore important to analyze trends among their parameters to learn more about these systems. More complexity is added to these systems with the presence of additional stellar companions. To study these complex systems, one can employ programming languages such as Python to parse databases such as those constructed by TESS and Gaia to bridge the gap between exoplanets and stellar companions. Data can then be analyzed for trends in these multi-star exoplanet systems and in juxtaposition to their single-star counterparts. This research was able …


An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein May 2018

An Analysis Of Frenkel Defects And Backgrounds Modeling For Supercdms Dark Matter Searches, Matthew Stein

Physics Theses and Dissertations

Years of astrophysical observations suggest that dark matter comprises more than ~80 % of all matter in the universe. Particle physics theories favor a weakly-interacting particle that could be directly detected in terrestrial experiments. The Super Cryogenic Dark Matter Search (SuperCDMS) Collaboration operates world-leading experiments to directly detect dark matter interacting with ordinary matter. The SuperCDMS Soudan experiment searched for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei in low-temperature germanium detectors.

During the operation of the SuperCDMS Soudan experiment, 210Pb sources were installed to study background rejection of the Ge detectors. Data from these sources …


Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana May 2018

Cosmological Distance Measurements With Rotse Supernovae Iip And Observational Systematics On Desi Emission Line Galaxy Clustering, Govinda Dhungana

Physics Theses and Dissertations

Both Supernovae (SNe) and Baryon Acoustic Oscillations (BAO) surveys emerged as complementary probes of the expansion history of the universe in the last few decades. SNe Ia cosmology has reached the systematic limits in the optical surveys. The most frequently occuring SNe Type IIP are emerging as equally rich distance probes for the next generation larger surveys. In this thesis, I highlight the astrophysical observables of these events in the context of ROTSE III SN survey and using the ROTSE SNe IIP sample, I present calibration in the framework of expanding photosphere method (EPM) to use them as cosmological distance …


Exoplanet Research: Differential Photometry For Kepler 6b, Garrett T. Benson, Charlotte Alexandra Olsen Oct 2016

Exoplanet Research: Differential Photometry For Kepler 6b, Garrett T. Benson, Charlotte Alexandra Olsen

IdeaFest: Interdisciplinary Journal of Creative Works and Research from Cal Poly Humboldt

No abstract provided.


Examination Of Resonant Modes In Microwave Cavities, Sophia Schwalbe, Gianpaolo Carosi Aug 2016

Examination Of Resonant Modes In Microwave Cavities, Sophia Schwalbe, Gianpaolo Carosi

Student Works

The Axion Dark Matter eXperiment (ADMX) looks to detect dark matter axion particles by using microwave cavities in a high magnetic eld to convert the axion's mass energy to a detectable photon. The photon frequency corresponds to the axion mass. Tuning elements in the cavities allow the resonant frequency to be changed but only certain modes couple to the axion. Interactions with additional resonant modes that do not couple to the axion cause unobservable regions in the frequency range. This research investigated new methods to move the additional resonant modes in order to observe these regions.


The Parallelization And Optimization Of The N-Body Problem Using Openmp And Openmpi, Nicholas J. Carugati Apr 2016

The Parallelization And Optimization Of The N-Body Problem Using Openmp And Openmpi, Nicholas J. Carugati

Student Publications

The focus of this research is exploring the efficient ways we can implement the NBody problem. The N-Body problem, in the field of physics, is a problem in which predicts or simulates the movements of planets and how they interact with each other gravitationally. For this research, we are viewing if the simulation can execute efficiently by delegating the heavy computational work through different cores of a CPU. The approach that is being used to figure this out is by integrating the parallelization API OpenMP and the message-passing library OpenMPI into the code. Rather than all the code executing on …


The Encyclopedia Of Neutrosophic Researchers - Vol. 1, Florentin Smarandache Jan 2016

The Encyclopedia Of Neutrosophic Researchers - Vol. 1, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jul 2014

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Jay S Huebner

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Unsolved Problems In Special And General Relativity, Florentin Smarandache, Fu Yuhua, Zhao Fengjuan Jan 2013

Unsolved Problems In Special And General Relativity, Florentin Smarandache, Fu Yuhua, Zhao Fengjuan

Branch Mathematics and Statistics Faculty and Staff Publications

This book includes 21 papers written by 23 authors and co-authors. All papers included herein are produced by scholars from People’s Republic of China, except two papers written by Prof. L. Sapogin, V. A. Dzhanibekov, Yu. A. Ryabov from Russia, and by Prof. Florentin Smarandache from USA. The editors hope that all these papers will contribute to the advance of scholarly research on several aspects of Special and General Relativity. This book is suitable for students and scholars interested in studies on physics. The first paper is written by Hua Di. He writes that Einstein’s general theory of relativity cannot …


Reissner–Nordstrom Expansion, Emil Prodanov, Rossen Ivanov, Vesselin Gueorguiev Jan 2007

Reissner–Nordstrom Expansion, Emil Prodanov, Rossen Ivanov, Vesselin Gueorguiev

Articles

We propose a classical mechanism for the cosmic expansion during the radiation-dominated era, assuming the Universe as a two-component gas. The first component is the ultra-relativistic “standard” fraction described by an equation of state of an ideal quantum gas of massless particles. The second component consist of superheavy charged particles and their interaction with the “standard” fraction drives the expansion. This interaction is described by the Reissner–Nordstr¨om metric purely geometrically — the superheavy charged particles are modeled as zero-dimensional naked singularities which exhibit gravitational repulsion. The radius of a repulsive sphere, surrounding a naked singularity of charge Q, is inversely …


Unfolding The Labyrinth: Open Problems In Physics, Mathematics, Astrophysics, And Other Areas Of Science, Florentin Smarandache, Victor Christianto, Fu Yuhua, Radi Khrapko, John Hutchison Jan 2006

Unfolding The Labyrinth: Open Problems In Physics, Mathematics, Astrophysics, And Other Areas Of Science, Florentin Smarandache, Victor Christianto, Fu Yuhua, Radi Khrapko, John Hutchison

Branch Mathematics and Statistics Faculty and Staff Publications

The reader will find herein a collection of unsolved problems in mathematics and the physical sciences. Theoretical and experimental domains have each been given consideration. The authors have taken a liberal approach in their selection of problems and questions, and have not shied away from what might otherwise be called speculative, in order to enhance the opportunities for scientific discovery. Progress and development in our knowledge of the structure, form and function of the Universe, in the true sense of the word, its beauty and power, and its timeless presence and mystery, before which even the greatest intellect is awed …


Today's Take On Einstein’S Relativity: Proceedings Of The Conference Of 18 Feb 2005, Florentin Smarandache, Homer B. Tilton Jan 2005

Today's Take On Einstein’S Relativity: Proceedings Of The Conference Of 18 Feb 2005, Florentin Smarandache, Homer B. Tilton

Branch Mathematics and Statistics Faculty and Staff Publications

Non Sequiturs in Relativity Four in number at this point Dr. Smith of "Lost in Space" had a knack of easing out of binds that he'd gotten himself into. Dr. Einstein was a little like that. Einstein originally declared that the distortions of special relativity reflect real changes to the objects being remotely observed, then reconsidered. The first non sequitur is quoted here from Sachs:[1] In a lecture that Einstein gave to the Prussian Academy of Sciences in 1921, he said the following: "Geometry predicates nothing about relations of real things, but only geometry together with the purport of physical …


Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner Jan 1996

Basic Astronomy Labs, Terry L. Smith, Michael D. Reynolds, Jay S. Huebner

Physics Faculty Research and Scholarship

Providing the tools and know-how to apply the principles of astronomy first-hand, these 43 laboratory exercises each contain an introduction that clearly shows budding astronomers why the particular topic of that lab is of interest and relevant to astronomy. About one-third of the exercises are devoted solely to observation, and no mathematics is required beyond simple high school algebra and trigonometry.Organizes exercises into six major topics—sky, optics and spectroscopy, celestial mechanics, solar system, stellar properties, and exploration and other topics—providing clear outlines of what is involved in the exercise, its purpose, and what procedures and apparatus are to be used. …


Some Contributions Of Pure Math To Science, Herbert B.E. Case Jan 1897

Some Contributions Of Pure Math To Science, Herbert B.E. Case

Student and Lippitt Prize essays

An examination of the connection between math and science through discoveries in the subjects of astronomy, mechanics, physics and chemistry.