Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto Mar 2019

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

The Standard Model of particle physics has accomplished a great deal including the discovery of Higgs boson in 2012. However, since the supersymmetric extension of the Standard Model has not been successful so far, some physicists are asking what alternative deeper theory could be beyond the Standard Model? This article discusses the relationship between mathematics and physical reality and explores the ways to go from Big Science to “Deep Science”.


The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache Jan 2019

The Encyclopedia Of Neutrosophic Researchers - Vol. 3, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …


Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin Jan 2019

Neutrosophic Triplet Structures - Vol. 1, Florentin Smarandache, Memet Sahin

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs, the properties of neutrosophic sets …


The Encyclopedia Of Neutrosophic Researchers - Vol. 2, Florentin Smarandache Jan 2018

The Encyclopedia Of Neutrosophic Researchers - Vol. 2, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the second volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to my invitation. The introduction contains a short history of neutrosophics, together with links to the main papers and books. The authors who have published neutrosophic papers, books, or defended neutrosophic master theses or PhD dissertations and are not included in the two ENR volumes, are kindly invited to send their self-presentations or their CVs, a photo, and a list of neutrosophic publications to smarand@unm.edu and neutrosophy@laposte.net to be part of a third volume.

Florentin Smarandache


The Encyclopedia Of Neutrosophic Researchers - Vol. 1, Florentin Smarandache Jan 2016

The Encyclopedia Of Neutrosophic Researchers - Vol. 1, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: …


Neutrosophic Theory And Its Applications : Collected Papers - Vol. 1, Florentin Smarandache Jan 2014

Neutrosophic Theory And Its Applications : Collected Papers - Vol. 1, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic Theory means Neutrosophy applied in many fields in order to solve problems related to indeterminacy. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every entity together with its opposite or negation and with their spectrum of neutralities in between them (i.e. entities supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every entity tends to be …


Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski Aug 2010

Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski

Dartmouth Scholarship

We consider ion heating by turbulent Alfvén waves (AWs) and kinetic Alfvén waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. We focus on plasmas in which β < 1, where β is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity ε = δv ρ/v , where v (v ) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and δv ρB ρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case …


Neutrosophic Physics: More Problems, More Solutions, Florentin Smarandache May 2010

Neutrosophic Physics: More Problems, More Solutions, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

When considering the laws of theoretical physics, one of the physicists says that these laws – the actual expressions of the laws of mathematics and logics being applied to physical phenomena – should be limited according to the physical meaning we attribute to the phenomena. In other word, there is an opinion that a theoretical physicist should put some limitations onto mathematics, in order to “reduce” it to the observed reality. No doubt, we can do it. However, if following this way, we would arrive at only mathematical models of already known physical phenomena. Of course, this might be useful …


Distance To The Sagittarius Dwarf Galaxy Using Macho Project Rr Lyrae Stars, Andrea Kunder, Brian Chaboyer Apr 2009

Distance To The Sagittarius Dwarf Galaxy Using Macho Project Rr Lyrae Stars, Andrea Kunder, Brian Chaboyer

Dartmouth Scholarship

We derive the distance to the northern extension of the Sagittarius (Sgr) dwarf spheroidal galaxy from 203 Sgr RR0 Lyrae stars found in the MACHO database. Their distances are determined differentially with respect to 288 Galactic bulge RR0 Lyrae stars also found in the MACHO data. We find a distance modulus difference of 2.41 mag at l = 5 and b =− 8 and that the extension of the Sgr galaxy toward the galactic plane is inclined toward us. Assuming R GC = 8 kpc, this implies the distance to these stars is (m − M) 0 = …


New Neighbors: Parallaxes Of 18 Nearby Stars Selected From The Lspm-North Catalog, Sébastien Lépine, John R. Thorstensen, Michael M. Shara, R. Michael Rich Mar 2009

New Neighbors: Parallaxes Of 18 Nearby Stars Selected From The Lspm-North Catalog, Sébastien Lépine, John R. Thorstensen, Michael M. Shara, R. Michael Rich

Dartmouth Scholarship

We present astrometric parallaxes for 18 suspected nearby stars selected from the LSPM-north proper motion catalog. 16 objects are confirmed to be main-sequence M dwarfs within 16 pc of the Sun, including three stars (LSPM J0011+5908, LSPM J0330+5413, and LSPM J0510+2714) which lie just within the 10 pc horizon. Two other targets (LSPM J1817+1328, LSPM J2325+1403) are confirmed to be nearby white dwarfs at distances of 14 and 22 pc, respectively. One of our targets, the common proper motion pair LSPM J0405+7116E + LSPM J0405+7116W, is revealed to be a triple system, with the western component resolved into a pair …


Unfolding The Labyrinth: Open Problems In Physics, Mathematics, Astrophysics, And Other Areas Of Science, Florentin Smarandache, Victor Christianto, Fu Yuhua, Radi Khrapko, John Hutchison Jan 2006

Unfolding The Labyrinth: Open Problems In Physics, Mathematics, Astrophysics, And Other Areas Of Science, Florentin Smarandache, Victor Christianto, Fu Yuhua, Radi Khrapko, John Hutchison

Branch Mathematics and Statistics Faculty and Staff Publications

The reader will find herein a collection of unsolved problems in mathematics and the physical sciences. Theoretical and experimental domains have each been given consideration. The authors have taken a liberal approach in their selection of problems and questions, and have not shied away from what might otherwise be called speculative, in order to enhance the opportunities for scientific discovery. Progress and development in our knowledge of the structure, form and function of the Universe, in the true sense of the word, its beauty and power, and its timeless presence and mystery, before which even the greatest intellect is awed …


Bouncing Branes, Emil Prodanov Jan 2002

Bouncing Branes, Emil Prodanov

Articles

Two classical scalar fields are minimally coupled to gravity in the Kachru-Shulz-Silverstein scenario with a rolling fifth radius. A Tolman wormhole solution is found for a R x S^3 brane with Lorentz metric and for a R x AdS_3 brane with positive definite metric.


Proceedings Of The First International Conference On Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability And Statistics, Florentin Smarandache Jan 2002

Proceedings Of The First International Conference On Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability And Statistics, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In 1960s Abraham Robinson has developed the non-standard analysis, a formalization of analysis and a branch of mathematical logic, that rigorously defines the infinitesimals. Informally, an infinitesimal is an infinitely small number. Formally, x is said to be infinitesimal if and only if for all positive integers n one has xxx < 1/n. Let &>0 be a such infinitesimal number. The hyper-real number set is an extension of the real number set, which includes classes of infinite numbers and classes of infinitesimal numbers. Let’s consider the non-standard finite numbers 1+ = 1+&, where “1” is its standard part and “&” its non-standard part, …


Some Contributions Of Pure Math To Science, Herbert B.E. Case Jan 1897

Some Contributions Of Pure Math To Science, Herbert B.E. Case

Student and Lippitt Prize essays

An examination of the connection between math and science through discoveries in the subjects of astronomy, mechanics, physics and chemistry.