Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall May 2023

Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall

Doctoral Dissertations

The lipid membrane is the first component necessary to sustain life. To maintain homeostasis, segregate cellular machinery, provide protection from the environment, and reproduce, an organism must establish a boundary in which the processes can occur. Throughout the last two decades, research has propelled our knowledge of lipid membranes much beyond original hypotheses. Once thought of to be static and uniform, the understanding of the lipid membrane has evolved to encompass a structure that is responsive, unique, and intricately constructed by the organism itself. By chance or by choice, organisms adapt the lipid membrane according to the environment for which …


Application Of Mass Spectrometry For The Characterization Of Synthetic Oligomers And Natural Lignin, Poorya Kamali Jan 2023

Application Of Mass Spectrometry For The Characterization Of Synthetic Oligomers And Natural Lignin, Poorya Kamali

Theses and Dissertations--Chemistry

As part of the ongoing effort to substitute finite fuel and chemical resources with renewable ones, biomass is emerging as one of the most promising sources. Biomass consists of three main components of cellulose, hemicellulose, and lignin. Traditionally, cellulose has been used extensively in pulping industry, while lignin has been considered waste and is burned to generate heat. Lignin, a complex aromatic polymer component of biomass, has the potential to be used as a source of aromatic chemicals and pharmaceutical synthons. The recalcitrant nature of lignin, the lack of effective lignin breakdown methods and analytical techniques to analyze it are …


Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao Oct 2019

Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao

Doctoral Dissertations

Mass spectrometry (MS) has played an increasingly prominent role in proteomics and structure biology because it shows superior capabilities in identification, quantification and structural characterization of proteins. To realize its full potential in protein analysis, significant progress has been made in developing innovative techniques and reagents that can couple to MS detection. This dissertation demonstrates the use of polymeric supramolecular assemblies for enhanced protein detection in complex biological mixtures by MS. An amphiphilic random co-polymer scaffold is developed to form functional supramolecular assemblies for protein/ peptide enrichment. The influences of charge density and functional group pKa on host-guest interactions …


An Alignment-Free "Metapeptide" Strategy For Metaproteomic Characterization Of Microbiome Samples Using Shotgun Metagenomic Sequencing, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, H. Rodger Harvey, Elhanan Borenstein, Brook L. Nunn, William S. Noble Jan 2016

An Alignment-Free "Metapeptide" Strategy For Metaproteomic Characterization Of Microbiome Samples Using Shotgun Metagenomic Sequencing, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, H. Rodger Harvey, Elhanan Borenstein, Brook L. Nunn, William S. Noble

OES Faculty Publications

In principle, tandem mass spectrometry can be used to detect and quantify the peptides present in a microbiome sample, enabling functional and taxonomic insight into microbiome metabolic activity. However, the phylogenetic diversity constituting a particular microbiome is often unknown, and many of the organisms present may not have assembled genomes. In ocean microbiome samples, with particularly diverse and uncultured bacterial communities, it is difficult to construct protein databases that contain the bulk of the peptides in the sample without losing detection sensitivity due to the overwhelming number of candidate peptides for each tandem mass spectrum. We describe a method for …