Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Thermal Correction To The Molar Polarizability Of A Boltzmann Gas, Ulrich D. Jentschura, Mariusz Puchalski, Peter J. Mohr Dec 2011

Thermal Correction To The Molar Polarizability Of A Boltzmann Gas, Ulrich D. Jentschura, Mariusz Puchalski, Peter J. Mohr

Physics Faculty Research & Creative Works

Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when …


A Simple Approach To Neutral Atom Microscopy, Philip Witham, Erik J. Sánchez Oct 2011

A Simple Approach To Neutral Atom Microscopy, Philip Witham, Erik J. Sánchez

Physics Faculty Publications and Presentations

Scanning surfaces using a beam of noncharged atoms or molecules allows for especially nondestructive and low-energy surface imaging, with the potential to obtain new information about surfaces that cannot be easily obtained otherwise. We have developed a new approach, operating with the sample at a close working distance from an aperture, the need for optics to focus the beam is obviated. Compared to more complex approaches, the theoretical performance has no other disadvantage than the short working distance. Resolution of 1.5 μm has been achieved, and submicron resolution appears to be practical. Construction of the microscope and results are presented, …


Manipulating Atomic Fragmentation Processes By Controlling The Projectile Coherence, Kisra N. Egodapitiya, Sachin D. Sharma, Ahmad Hasan, Aaron C. Laforge, Don H. Madison, Robert Moshammer, Michael Schulz Apr 2011

Manipulating Atomic Fragmentation Processes By Controlling The Projectile Coherence, Kisra N. Egodapitiya, Sachin D. Sharma, Ahmad Hasan, Aaron C. Laforge, Don H. Madison, Robert Moshammer, Michael Schulz

Physics Faculty Research & Creative Works

We have measured the scattering angle dependence of cross sections for ionization in p+H2 collisions for a fixed projectile energy loss. Depending on the projectile coherence, interference due to indistinguishable diffraction of the projectile from the two atomic centers was either present or absent in the data. This shows that, due to the fundamentals of quantum mechanics, the preparation of the beam must be included in theoretical calculations. The results have far-reaching implications on formal atomic scattering theory because this critical aspect has been overlooked for several decades.