Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

The Impact Of ‘‘No Impact Man’’: Alternative Hedonism As Environmental Appeal, Jen Schneider, Glen Miller Dec 2011

The Impact Of ‘‘No Impact Man’’: Alternative Hedonism As Environmental Appeal, Jen Schneider, Glen Miller

Jen Schneider

As ‘‘No Impact Man,’’ writer Colin Beavan conducted a one-year experiment to determine whether he and his family could reduce their environmental impact to zero while living and working in Manhattan. This article examines the No Impact Man (NIM) experiment both as ‘‘alternative hedonism,’’ a reconceptualization of the ‘‘good life’’ that avoids unduly damaging the natural world, and also as a kind of ‘‘eco-stunt,’’ an attempt to garner significant media coverage about positive environmental behaviors. We use DeLuca’s theorization of the ‘‘image event’’ to analyze the No Impact Man franchise—blog, book, and documentary film—though we modify that theory in order …


Chemical Activity In Yba2cu3o7 − Δ Across The Normal To Superconducting Phase Transition, Juana Vivó Acrivos Nov 2011

Chemical Activity In Yba2cu3o7 − Δ Across The Normal To Superconducting Phase Transition, Juana Vivó Acrivos

Faculty Publications, Chemistry

The Gibbs free enthalpy, chemical activity across the transition temperature to superconductivity, Tc in YBa2Cu3O7 − δ is obtained from reciprocally enhanced X-Ray absorbance, XAS and diffraction, XRD data near the Ba L3,2 edges' energy Ea, and orientations in the X-ray beam for preferred Miller indexed [HKL] planes' scattering, that are enhanced near Tc. The standard enthalpy and entropy for the formation of mixed normal metal/superconducting domains above Tc, determined individually across the two Ba L3,2 edges, to better than a percent accuracy: ΔH≠≥ = − 220 meV, and ΔS≠≥ = − 2 meV/K when 121 ≥ T ≥ 92 …


Chemical Activity In Yba2cu3o7 − Δ Across The Normal To Superconducting Phase Transition, Juana Vivó Acrivos Nov 2011

Chemical Activity In Yba2cu3o7 − Δ Across The Normal To Superconducting Phase Transition, Juana Vivó Acrivos

Juana Vivó Acrivos

The Gibbs free enthalpy, chemical activity across the transition temperature to superconductivity, Tc in YBa2Cu3O7 − δ is obtained from reciprocally enhanced X-Ray absorbance, XAS and diffraction, XRD data near the Ba L3,2 edges' energy Ea, and orientations in the X-ray beam for preferred Miller indexed [HKL] planes' scattering, that are enhanced near Tc. The standard enthalpy and entropy for the formation of mixed normal metal/superconducting domains above Tc, determined individually across the two Ba L3,2 edges, to better than a percent accuracy: ΔH≠≥ = − 220 meV, and ΔS≠≥ = − 2 meV/K when 121 ≥ T ≥ 92 …


Counter-Propagating Two-Soliton Solutions In The Fermi–Pasta–Ulam Lattice, Aaron Hoffman, C.E. Wayne Oct 2011

Counter-Propagating Two-Soliton Solutions In The Fermi–Pasta–Ulam Lattice, Aaron Hoffman, C.E. Wayne

Aaron Hoffman

We study the interaction of small amplitude, long-wavelength solitary wavesin the Fermi–Pasta–Ulam model with general nearest-neighbour interactionpotential. We establish global-in-time existence and stability of counterpropagatingsolitary wave solutions. These solutions are close to the linearsuperposition of two solitary waves for large positive and negative values oftime; for intermediate values of time these solutions describe the interactionof two counter-propagating pulses. These solutions are stable with respectto perturbations in L2 and asymptotically stable with respect to perturbationswhich decay exponentially at spatial ±∞.


X-Ray Scattering Study Of The Incommensurate Phase In Mg-Doped Cugeo3, Rebecca J. Christianson, Y. J. Wang, S.C. Lamarra, R. J. Birgeneau, V. Kiryukhin, T. Masuda, I. Tsukada, K. Uchinokura, B. Keimer Sep 2011

X-Ray Scattering Study Of The Incommensurate Phase In Mg-Doped Cugeo3, Rebecca J. Christianson, Y. J. Wang, S.C. Lamarra, R. J. Birgeneau, V. Kiryukhin, T. Masuda, I. Tsukada, K. Uchinokura, B. Keimer

Rebecca J. Christianson

We present results of a systematic x-ray scattering study of the effects of Mg doping on the high-fieldincommensurate phase of CuGeO3. Lorentzian-squared line shapes, the changing of the first-order transition tosecond order, and the destruction of long-range order with infinitesimal doping are observed, consistent withrandom-field effects in a three-dimensional XY system. Values for the soliton width in pure and lightly dopedCuGeO3 are deduced. We find that even a very small doping has a drastic effect on the shape of the latticemodulation.


Two-Magnon Excitations Observed By Neutron Scattering In The Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb2mnf4, T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, Rebecca Christianson, C. D. Frost Sep 2011

Two-Magnon Excitations Observed By Neutron Scattering In The Two-Dimensional Spin-5/2 Heisenberg Antiferromagnet Rb2mnf4, T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, Rebecca Christianson, C. D. Frost

Rebecca J. Christianson

The low-temperature magnetic excitations of the two-dimensional spin- 52 square-lattice Heisenberg antiferromagnetRb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharppeaks identified with one-magnon excitations, a relatively weak continuum scattering is also observed at higherenergies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistentwith predictions of spin wave theory.


Time-Dependent Strength Of Colloidal Gels, S. Manley, Benny Davidovitch, Neil R. Davies, L. Cipelletti, A. E. Bailey, Rebecca J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, A. L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, D. A. Weitz Sep 2011

Time-Dependent Strength Of Colloidal Gels, S. Manley, Benny Davidovitch, Neil R. Davies, L. Cipelletti, A. E. Bailey, Rebecca J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, A. L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, D. A. Weitz

Rebecca J. Christianson

Colloidal silica gels are shown to stiffen with time, as demonstrated by both dynamic light scattering and bulk rheological measurements. Their elastic moduli increase as a power law with time, independent of particle volume fraction; however, static light scattering indicates that there are no large-scale structural changes. We propose that increases in local elasticity arising from bonding between neighboring colloidal particles can account for the strengthening of the network, while preserving network structure.


Spinodal Decomposition In A Model Colloid-Polymer Mixture In Microgravity, A. E. Bailey, W. C. K. Poon, Rebecca J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T., Jr. Lorik, P. N. Pusey, D. A. Weitz Sep 2011

Spinodal Decomposition In A Model Colloid-Polymer Mixture In Microgravity, A. E. Bailey, W. C. K. Poon, Rebecca J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T., Jr. Lorik, P. N. Pusey, D. A. Weitz

Rebecca J. Christianson

We study phase separation in a deeply quenched colloid-polymer mixture in microgravity on the International Space Station using small-angle light scattering and direct imaging. We observe a clear crossover from early-stage spinodal decomposition to late-stage, interfacial-tension-driven coarsening. Data acquired over 5 orders of magnitude in time show more than 3 orders of magnitude increase in domain size, following nearly the same evolution as that in binary liquid mixtures. The late-stage growth approaches the expected linear growth rate quite slowly.


X-Ray Scattering Studies Of Two Length Scales In The Critical Fluctuations Of Cugeo3, Y. J. Wang, Y. J. Kim, Rebecca J. Christianson, S. C. Lamarra, F. C. Chou, R. J. Birgeneau Sep 2011

X-Ray Scattering Studies Of Two Length Scales In The Critical Fluctuations Of Cugeo3, Y. J. Wang, Y. J. Kim, Rebecca J. Christianson, S. C. Lamarra, F. C. Chou, R. J. Birgeneau

Rebecca J. Christianson

The critical fluctuations of CuGeO3 have been measured by synchrotron x-ray scattering, and two length scales are clearly observed. The ratio between the two length scales is found to be significantly different along the a axis, with the a axis along the surface normal direction. We believe that such a directional preference is a clear sign that random surface strains, especially those caused by dislocations, are the origin of the long length scale fluctuations.


Space Weather Community Operations Workshop: Planning For The Next Decade, J. Fulgham, Jennifer Meehan, W. Tobiska Sep 2011

Space Weather Community Operations Workshop: Planning For The Next Decade, J. Fulgham, Jennifer Meehan, W. Tobiska

Jennifer (Jinni) Meehan

No abstract provided.


Importance Of Soil Texture To Vineyard Management, Thomas J. Rice Jul 2011

Importance Of Soil Texture To Vineyard Management, Thomas J. Rice

Thomas J. Rice

No abstract provided.


Limits To Gelation In Colloidal Aggregation, S. Manley, L. Cipelletti, V. Trappe, A. E. Bailey, Rebecca J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, A. L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, D. A. Weitz Jul 2011

Limits To Gelation In Colloidal Aggregation, S. Manley, L. Cipelletti, V. Trappe, A. E. Bailey, Rebecca J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, A. L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, D. A. Weitz

Rebecca J. Christianson

We show that the dynamics of large fractal colloid aggregates are well described by a combination of translational and rotational diffusion and internal elastic fluctuations, allowing both the aggregate size and internal elasticity to be determined by dynamic light scattering. The comparison of results obtained in microgravity and on Earth demonstrates that cluster growth is limited by gravity-induced restructuring. In the absence of gravity, thermal fluctuations ultimately inhibit fractal growth and set the fundamental limitation to the lowest volume fraction which will gel.


Critical Dynamics Of A Spin-5/2 Two-Dimensional Isotropic Antiferromagnet, Rebecca J. Christianson, R. L. Leheny, R. J. Birgeneau, R. W. Erwin Jul 2011

Critical Dynamics Of A Spin-5/2 Two-Dimensional Isotropic Antiferromagnet, Rebecca J. Christianson, R. L. Leheny, R. J. Birgeneau, R. W. Erwin

Rebecca J. Christianson

We report a neutron-scattering study of the dynamic spin correlations in Rb2MnF4, a two-dimensional spin-5/2 antiferromagnet. By tuning an external magnetic field to the value for the spin-flop line, we reduce the effective spin anisotropy to essentially zero, thereby obtaining a nearly ideal two-dimensional isotropic antiferromagnet. From the shape of the quasielastic peak as a function of temperature, we demonstrate dynamic scaling for this system and find a value for the dynamical exponent z. We compare these results to theoretical predictions for the dynamic behavior of the two-dimensional Heisenberg model, in which deviations from z=1 provide a measure of the …


Spin Correlations In An Isotropic Spin-5/2 Two-Dimensional Antiferromagnet, R. L. Leheny, Rebecca J. Christianson, R. J. Birgeneau, R. W. Erwin Jul 2011

Spin Correlations In An Isotropic Spin-5/2 Two-Dimensional Antiferromagnet, R. L. Leheny, Rebecca J. Christianson, R. J. Birgeneau, R. W. Erwin

Rebecca J. Christianson

We report a neutron scattering study of the spin correlations for the spin-5/2 two-dimensional antiferromagnet Rb2MnF4 in an external magnetic field. Choosing fields near the system’s bicritical point, we tune the effective anisotropy in the spin interaction to zero, constructing an ideal S ­ = 5/2 Heisenberg system. The correlation length and structure factor amplitude are closely described by the semiclassical theory of Cuccoli 'et al.' over a broad temperature range, but show no indication of approaching the low-temperature renormalized classical regime of the quantum nonlinear sigma model.


Electrochemistry And Staging In La2cuo4+D, P Blakeslee, R J. Birgeneau, F C. Chou, Rebecca J. Christianson, M A. Kastner, Y S. Lee, B O. Wells Jul 2011

Electrochemistry And Staging In La2cuo4+D, P Blakeslee, R J. Birgeneau, F C. Chou, Rebecca J. Christianson, M A. Kastner, Y S. Lee, B O. Wells

Rebecca J. Christianson

Measurements are reported of the time dependence of the current during electrochemical oxidation and reduction at a fixed voltage of single crystals and ceramic samples of La2CuO4+d. Staging peaks in neutron measurements of the single crystals together with the electrochemical measurements and magnetization measurements confirm that stage n=6 corresponds to d=0.055 +/- 0.05, the high-d side of the oxygen-rich–oxygen-poor miscibility gap. Furthermore, stage n=4 occurs at a value of d consistent with d{n^-1. For ceramic samples it is shown that two different superconducting compounds are formed depending on the oxidation voltage used.


Finite-State Markov Chains Obey Benford’S Law, Arno Berger, Theodore P. Hill, Bahar Kaynar, Ad Ridder Jul 2011

Finite-State Markov Chains Obey Benford’S Law, Arno Berger, Theodore P. Hill, Bahar Kaynar, Ad Ridder

Theodore P. Hill

A sequence of real numbers (xn) is Benford if the significands, i.e., the fraction parts in the floating-point representation of (xn), are distributed logarithmically. Similarly, a discrete-time irreducible and aperiodic finite-state Markov chain with transition probability matrix P and limiting matrix P* is Benford if every component of both sequences of matrices (Pn−P*) and (Pn+1−Pn) is Benford or eventually zero. Using recent tools that established Benford behavior for finite-dimensional linear maps, via the classical theories of uniform distribution modulo 1 and Perron–Frobenius, this paper derives a simple sufficient condition (“nonresonance”) guaranteeing that P, or the Markov chain associated with it, …


Measuring The Persistence Length Of Mcf7 Cell Microtubules In Vitro, Mitra Shojania-Feizabadi, Kiryako Mutafopulos, Adam Behr Jun 2011

Measuring The Persistence Length Of Mcf7 Cell Microtubules In Vitro, Mitra Shojania-Feizabadi, Kiryako Mutafopulos, Adam Behr

Mitra Shojania-Feizabadi

No abstract provided.


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr.

David V. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr.

Sherra E. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Benford’S Law Strikes Back: No Simple Explanation In Sight For Mathematical Gem, Arno Berger, Theodore P. Hill Mar 2011

Benford’S Law Strikes Back: No Simple Explanation In Sight For Mathematical Gem, Arno Berger, Theodore P. Hill

Theodore P. Hill

No abstract provided.


Making The Human Dimensions Of Sustainable Community Development Visible To Engineers, Juan Lucena, Jen Schneider, Jon A. Leydens Mar 2011

Making The Human Dimensions Of Sustainable Community Development Visible To Engineers, Juan Lucena, Jen Schneider, Jon A. Leydens

Jen Schneider

Recently, engineers – particularly those working on sustainability-related initiatives – have increasingly turned their efforts towards under-served communities. This paper summarises the findings in Engineering and Sustainable Community Development (Juan Lucena et al., 2010) aimed at a diversity of these efforts which are grouped here under the term ‘engineering to help’. These initiatives often exist under names such as community service, humanitarian engineering, and engineers without borders or activities such as the Institution of Civil Engineers' co-sponsored workshop ‘Helping local communities to help themselves’. Although there has been a blossoming of engineering-to-help-related programmes around the world, there is a …


Rethinking Mechanistic Explanation, Stuart Glennan Feb 2011

Rethinking Mechanistic Explanation, Stuart Glennan

Stuart Glennan

Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain objections to Salmon's account of causal-mechanical explanation. I conclude by discussing how mechanistic explanations can provide understanding by unification.


Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein Jan 2011

Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein

Brett VanVeller

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces …


Putting Partnership First: A Dialogue Model For Science And Risk Communication, Jen Schneider, Roel Snieder Jan 2011

Putting Partnership First: A Dialogue Model For Science And Risk Communication, Jen Schneider, Roel Snieder

Jen Schneider

In April 2010, the New York Times reported that Vattenfall AB, an energy company owned by the Swedish government, had built one of the first coal-fired power plants designed to capture ~90% of the CO2 it produced, with plans to sequester that CO2 underground in geologic repositories near its plant in Brandenburg, Germany (Voosen, 2010). By most measures, if the plant's operations were proven to be successful, it could have served as a model for other carbon capture and sequestration plants worldwide.