Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Selected Works

Astrophysics and Astronomy

Stars: evolution

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Visitors From The Halo: 11 Gyr Old White Dwarfs In The Solar Neighborhood, Mukremin Kilic, Ted Von Hippel, Et Al. Aug 2019

Visitors From The Halo: 11 Gyr Old White Dwarfs In The Solar Neighborhood, Mukremin Kilic, Ted Von Hippel, Et Al.

Ted von Hippel

We report the discovery of three nearby old halo white dwarf (WD) candidates in the Sloan Digital Sky Survey (SDSS), including two stars in a common proper motion binary system. These candidates are selected from our 2800deg2 proper motion survey on the Bok and U.S. Naval Observatory Flagstaff Station 1.3 m telescopes, and they display proper motions of 0˝.4-0˝.5 yr¯1. Follow-up MMT spectroscopy and near-infrared photometry demonstrate that all three objects are hydrogen-dominated atmosphere WDs with T eff ≈ 3700-4100 K. For average mass WDs, these temperature estimates correspond to cooling ages of 9-10 Gyr, distances of 70-80 pc, and …


Photometric Identification Of Cool White Dwarfs, M. Kilic, D. E. Winget, Ted Von Hippel, C. F. Claver Aug 2019

Photometric Identification Of Cool White Dwarfs, M. Kilic, D. E. Winget, Ted Von Hippel, C. F. Claver

Ted von Hippel

We investigate the use of a narrowband DDO51 filter for photometric identification of cool white dwarfs. We report photometric observations of 30 known cool white dwarfs with temperatures ranging from 10,000 K down to very cool temperatures (3500 K). Follow-up spectroscopic observations of a sample of objects selected using this filter and our photometric observations show that DDO51 filter photometry can help select cool white dwarf candidates for follow-up multiobject spectroscopy by rejecting 65% of main-sequence stars with the same broadband colors as the cool white dwarfs. This technique is not selective enough to efficiently feed single-object spectrographs. We present …


Measuring The Evolution Of The Most Stable Optical Clock G 117-B15a, S. O. Kepler, Ted Von Hippel, Et Al. Aug 2019

Measuring The Evolution Of The Most Stable Optical Clock G 117-B15a, S. O. Kepler, Ted Von Hippel, Et Al.

Ted von Hippel

We report our measurement of the rate of change of period with time () for the 215 s periodicity in the pulsating white dwarf G 117-B15A, the most stable optical clock known. After 31 years of observations, we have finally obtained a 4 σ measurement observed = (4.27 ± 0.80) × 10-15 s s-1. Taking into account the proper-motion effect of proper = (7.0 ± 2.0) × 10-16s s-1, we obtain a rate of change of period with time of = (3.57 ± 0.82) × 10-15 s s-1. This value is consistent with the cooling rate in our white dwarf …


Precise Ages Of Field Stars From White Dwarf Companions, M. Fouesneau, H-W. Rix, T. Von Hippel, D. W. Hogg, H. Tian Aug 2019

Precise Ages Of Field Stars From White Dwarf Companions, M. Fouesneau, H-W. Rix, T. Von Hippel, D. W. Hogg, H. Tian

Ted von Hippel

Observational tests of stellar and Galactic chemical evolution call for the joint knowledge of a star’s physical parameters, detailed element abundances, and precise age. For cool main-sequence (MS) stars the abundances of many elements can be measured from spectroscopy, but ages are very hard to determine. The situation is different if the MS star has a white dwarf (WD) companion and a known distance, as the age of such a binary system can then be determined precisely from the photometric properties of the cooling WD. As a pilot study for obtaining precise age determinations of field MS stars, we identify …


Inverting Color–Magnitude Diagrams To Access Precise Star Cluster Parameters: A New White Dwarf Age For The Hyades, Steven Degennaro, Ted Von Hippel, Et Al. Aug 2019

Inverting Color–Magnitude Diagrams To Access Precise Star Cluster Parameters: A New White Dwarf Age For The Hyades, Steven Degennaro, Ted Von Hippel, Et Al.

Ted von Hippel

We have extended our Bayesian modeling of stellar clusters—which uses main-sequence stellar evolution models, a mapping between initial masses and white dwarf (WD) masses, WD cooling models, and WD atmospheres—to include binary stars, field stars, and two additional main-sequence stellar evolution models. As a critical test of our Bayesian modeling technique, we apply it to Hyades UBV photometry, with membership priors based on proper motions and radial velocities, where available. Under the assumption of a particular set of WD cooling models and atmosphere models, we estimate the age of the Hyades based on cooling WDs to be 648 ± 45 …


Measuring The Evolutionary Rate Of Cooling Of Zz Ceti, Anjum S. Mukadam, Ted Von Hippel, Et Al. Aug 2019

Measuring The Evolutionary Rate Of Cooling Of Zz Ceti, Anjum S. Mukadam, Ted Von Hippel, Et Al.

Ted von Hippel

We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 ± 1.4) × 10–15 s s–1 employing the OC method and (5.45 ± 0.79) × 10–15 s s–1 using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained …


New Halo White Dwarf Candidates In The Sloan Digital Sky Survey, Kyra Dame, A. Gianninas, Mukremin Kilic, Jeffrey A. Munn, Warren R. Brown, Kurtis A. Williams, Ted Von Hippel, Hugh C. Harris Aug 2019

New Halo White Dwarf Candidates In The Sloan Digital Sky Survey, Kyra Dame, A. Gianninas, Mukremin Kilic, Jeffrey A. Munn, Warren R. Brown, Kurtis A. Williams, Ted Von Hippel, Hugh C. Harris

Ted von Hippel

We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19–22) high proper motion white dwarfs identified through repeat imaging of ≈3100 deg2 of the Sloan Digital Sky Survey footprint by Munn et al. We use ugriz and JHphotometry to perform a model atmosphere analysis, and identify 10 ultracool white dwarfs with Teff < 4000 K, including the coolest pure H atmosphere white dwarf currently known, J1657+2638, with Teff = 3550 ± 100 K. The majority of the objects with cooling ages larger than 9 Gyr display thick disc kinematics and constrain the age of the thick disc to ≥11 Gyr. There are four white dwarfs in our sample with …


Proper Motion Objects In The Hubble Deep Field, M. Kilic, Ted Von Hippel, Et Al. Aug 2019

Proper Motion Objects In The Hubble Deep Field, M. Kilic, Ted Von Hippel, Et Al.

Ted von Hippel

Using the deepest and finest resolution images of the universe acquired with the Hubble Space Telescope and a similar image taken 7 yr later for the Great Observatories Origins Deep Survey, we have derived proper motions for the point sources in the Hubble Deep Field–North. Two faint blue objects, HDF 2234 and HDF 3072, are found to display significant proper motion, 10:0 ± 2:5 and 15:5 ± 3:8 mas yr¯1. Photometric distances and tangential velocities for these stars are consistent with disk white dwarfs located at ~500 pc. The faint blue objects analyzed by Ibata et al. and Mendez & …


Inverting Color-Magnitude Diagrams To Access Precise Star Cluster Parameters: A Bayesian Approach, Ted Von Hippel, Et Al. Aug 2019

Inverting Color-Magnitude Diagrams To Access Precise Star Cluster Parameters: A Bayesian Approach, Ted Von Hippel, Et Al.

Ted von Hippel

We demonstrate a new Bayesian technique to invert color-magnitude diagrams of main-sequence and white dwarf stars to reveal the underlying cluster properties of age, distance, metallicity, and line-of-sight absorption, as well as individual stellar masses. The advantages our technique has over traditional analyses of color-magnitude diagrams are objectivity, precision, and explicit dependence on prior knowledge of cluster parameters. Within the confines of a given set of often-used models of stellar evolution, a single mapping of initial to final masses, and white dwarf cooling, and assuming photometric errors that one could reasonably achieve with the Hubble Space Telescope, our technique …


From Young And Hot To Old And Cold: Comparing White Dwarf Cooling Theory To Main-Sequence Stellar Evolution In Open Clusters, Ted Von Hippel Aug 2019

From Young And Hot To Old And Cold: Comparing White Dwarf Cooling Theory To Main-Sequence Stellar Evolution In Open Clusters, Ted Von Hippel

Ted von Hippel

I explore the current ability of both white dwarf cooling theory and main-sequence stellar evolution theory to accurately determine stellar population ages by comparing ages derived using both techniques for open clusters ranging from 0.1 to 4 Gyr. I find good agreement between white dwarf and main-sequence evolutionary ages over the entire age range currently available for study. I also find that directly comparing main-sequence turnoff ages to white dwarf ages is only weakly sensitive to realistic levels of errors in cluster distance, metallicity, and reddening. Additional detailed comparisons between white dwarf and main-sequence ages have tremendous potential to refine …


Constraining The Evolution Of Zz Ceti, Anjum S. Mukadam, S. O. Kepler, D. E. Nather, M. Kilic, F. Mullally, T. Von Hippel, S. J. Kleinman, A. Nitta, J. A. Guzik, P. A. Bradley, J. Matthews, K. Sekiguchi, D. J. Sullivan, T. Sullivan, R. R. Shobbrook, P. Birch, X. J. Jiang, D. W. Xu, S. Joshi, B. N. Ashoka, P. Ibbetson, E. Leibowitz, E. O. Ofek, E. G. Meištas, R. Janulis, R. D. Ališauskas, R. Kalytis, G. Handler, D. Kilkenny, D. O'Donoghue, D. W. Kurtz, M. Müller, P. Moskalik, W. Ogloza, S. Zola, J. Krzesiński, F. Johnannessen, J. M. Gonzalez-Perez, J. E. Solheim, R. Silvotti, S. Bernabei, G. Vauclair, N. Dolez, J. N. Fu, M. Chevreton, M. Manteiga, O. Suárez, A. Ulla, M. S. Cunha, T. S. Metcalfe, A. Kanaan, L. Fraga, A. F. M. Costa, O. Giovannini, G. Fontaine, P. Bergeron, M. S. O'Brien, D. Sanwal, M. A. Wood, T. J. Ahrens, N. Silvestri, E. W. Klumpe, S. D. Kawaler, R. Riddle, M. D. Reed, T. K. Watson Aug 2019

Constraining The Evolution Of Zz Ceti, Anjum S. Mukadam, S. O. Kepler, D. E. Nather, M. Kilic, F. Mullally, T. Von Hippel, S. J. Kleinman, A. Nitta, J. A. Guzik, P. A. Bradley, J. Matthews, K. Sekiguchi, D. J. Sullivan, T. Sullivan, R. R. Shobbrook, P. Birch, X. J. Jiang, D. W. Xu, S. Joshi, B. N. Ashoka, P. Ibbetson, E. Leibowitz, E. O. Ofek, E. G. Meištas, R. Janulis, R. D. Ališauskas, R. Kalytis, G. Handler, D. Kilkenny, D. O'Donoghue, D. W. Kurtz, M. Müller, P. Moskalik, W. Ogloza, S. Zola, J. Krzesiński, F. Johnannessen, J. M. Gonzalez-Perez, J. E. Solheim, R. Silvotti, S. Bernabei, G. Vauclair, N. Dolez, J. N. Fu, M. Chevreton, M. Manteiga, O. Suárez, A. Ulla, M. S. Cunha, T. S. Metcalfe, A. Kanaan, L. Fraga, A. F. M. Costa, O. Giovannini, G. Fontaine, P. Bergeron, M. S. O'Brien, D. Sanwal, M. A. Wood, T. J. Ahrens, N. Silvestri, E. W. Klumpe, S. D. Kawaler, R. Riddle, M. D. Reed, T. K. Watson

Ted von Hippel

We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt (5:5 ± 1:9) x 10-15 s s-1, after correcting for proper motion. Our results are consistent with previous values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is …


Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Jeffrey A. Munn, Hugh C. Harris, James W. Liebert, Ted Von Hippel, Kurtis A. Williams, Travis S. Metcalfe, D. E. Winget, Stephen E. Levine Aug 2019

Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Jeffrey A. Munn, Hugh C. Harris, James W. Liebert, Ted Von Hippel, Kurtis A. Williams, Travis S. Metcalfe, D. E. Winget, Stephen E. Levine

Ted von Hippel

A reduced proper motion diagram utilizing Sloan Digital Sky Survey (SDSS) photometry and astrometry and USNO-B plate astrometry is used to separate cool white dwarf candidates from metal-weak, high-velocity, mainsequence Population II stars (subdwarfs) in the SDSS Data Release 2 imaging area. Follow-up spectroscopy using the Hobby-Eberly Telescope, the MMT, and the McDonald 2.7 m telescope is used to demonstrate that the white dwarf and subdwarf loci separate cleanly in the reduced proper motion diagram and that the contamination by subdwarfs is small near the cool white dwarf locus. This enables large, statistically complete samples of white dwarfs, particularly the …


A Detailed Model Atmosphere Analysis Of Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Ted Von Hippel, Et Al. Aug 2019

A Detailed Model Atmosphere Analysis Of Cool White Dwarfs In The Sloan Digital Sky Survey, Mukremin Kilic, Ted Von Hippel, Et Al.

Ted von Hippel

We present optical spectroscopy and near-infrared photometry of 126 cool white dwarfs (WDs) in the Sloan Digital Sky Survey (SDSS). Our sample includes high proper motion targets selected using the SDSS and USNO-B astrometry and a dozen previously known ultracool WD candidates. Our optical spectroscopic observations demonstrate that a clean selection of large samples of cool WDs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic Survey Telescope data sets) is possible using a reduced proper motion diagram and a tangential velocity cut-off (depending on the proper motion accuracy) of 30 km s–1. Our near-infrared observations reveal eight …


A Near-Infrared Spectroscopic Survey Of Cool White Dwarfs In The Sloan Digital Sky Survey, Murkremin Kilic, Piotr M. Kowalski, Ted Von Hippel Aug 2019

A Near-Infrared Spectroscopic Survey Of Cool White Dwarfs In The Sloan Digital Sky Survey, Murkremin Kilic, Piotr M. Kowalski, Ted Von Hippel

Ted von Hippel

We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski & Saumon, we find …