Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui Dec 2019

Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui

Faculty Scholarship

State of the art music recommender systems mainly rely on either matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction by learning from temporal sequences of user actions. Despite advances in deep learning for song recommendation, none has taken advantage of the sequential nature of songs by learning sequence models that are based on content. Aside from the importance of prediction accuracy, other significant aspects are important, such as explainability and solving the cold start problem. In this work, we propose a hybrid deep learning …


Mining Semantic Knowledge Graphs To Add Explainability To Black Box Recommender Systems, Mohammed Alshammari, Olfa Nasraoui, Scott Sanders Aug 2019

Mining Semantic Knowledge Graphs To Add Explainability To Black Box Recommender Systems, Mohammed Alshammari, Olfa Nasraoui, Scott Sanders

Faculty Scholarship

Recommender systems are being increasingly used to predict the preferences of users on online platforms and recommend relevant options that help them cope with information overload. In particular, modern model-based collaborative filtering algorithms, such as latent factor models, are considered state-of-the-art in recommendation systems. Unfortunately, these black box systems lack transparency, as they provide little information about the reasoning behind their predictions. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of …


Clustering Of Multiple Instance Data., Andrew D. Karem May 2019

Clustering Of Multiple Instance Data., Andrew D. Karem

Electronic Theses and Dissertations

An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is …


Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy Jan 2019

Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy

Faculty Scholarship

AI Safety researchers attempting to align values of highly capable intelligent systems with those of humanity face a number of challenges including personal value extraction, multi-agent value merger and finally in-silico encoding. State-of-the-art research in value alignment shows difficulties in every stage in this process, but merger of incompatible preferences is a particularly difficult challenge to overcome. In this paper we assume that the value extraction problem will be solved and propose a possible way to implement an AI solution which optimally aligns with individual preferences of each user. We conclude by analyzing benefits and limitations of the proposed approach.