Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

University of Nevada, Las Vegas

Planetary systems

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

A Bayesian Framework For Exoplanet Direct Detection And Non-Detection, Jean-Baptiste Ruffio, Dimitri Mawet, Ian Czekala, Bruce Macintosh, Robert J. De Rosa, Garreth Ruane, Michael Bottom, Laurent Pueyo, Jason J. Wang, Lea Hirsch, Zhaohuan Zhu, Eric L. Nielsen Oct 2018

A Bayesian Framework For Exoplanet Direct Detection And Non-Detection, Jean-Baptiste Ruffio, Dimitri Mawet, Ian Czekala, Bruce Macintosh, Robert J. De Rosa, Garreth Ruane, Michael Bottom, Laurent Pueyo, Jason J. Wang, Lea Hirsch, Zhaohuan Zhu, Eric L. Nielsen

Physics & Astronomy Faculty Research

Rigorously quantifying the information in high-contrast imaging data is important for informing follow-up strategies to confirm the substellar nature of a point source, constraining theoretical models of planet–disk interactions, and deriving planet occurrence rates. However, within the exoplanet direct imaging community, non-detections have almost exclusively been defined using a frequentist detection threshold (i.e., contrast curve) and associated completeness. This can lead to conceptual inconsistencies when included in a Bayesian framework. A Bayesian upper limit is such that the true value of a parameter lies below this limit with a certain probability. The associated probability is the integral of the posterior …


Systematic Mischaracterization Of Exoplanetary System Dynamical Histories From A Model Degeneracy Near Mean-Motion Resonance, John H. Boisvert, Benjamin E. Nelson, Jason H. Steffen Jul 2018

Systematic Mischaracterization Of Exoplanetary System Dynamical Histories From A Model Degeneracy Near Mean-Motion Resonance, John H. Boisvert, Benjamin E. Nelson, Jason H. Steffen

Physics & Astronomy Faculty Research

There is a degeneracy in the radial velocity exoplanet signal between a single planet on an eccentric orbit and a two-planet system with a period ratio of 2:1. This degeneracy could lead to misunderstandings of the dynamical histories of planetary systems as well as measurements of planetary abundances if the correct architecture is not established. We constrain the rate of mischaracterization by analysing a sample of 60 non-transiting, radial velocity systems orbiting main-sequence stars from the NASA Exoplanet Archive (NASA Archive) using a new Bayesian model comparison pipeline. We find that 15 systems (25 per cent of our sample) show …


Planetary Candidates Observed By Kepler. Viii. A Fully Automated Catalog With Measured Completeness And Reliability Based On Data Release 25, Susan E. Thompson, Jeffrey L. Coughlin, Kelssey Hoffman, Fergal Mullally, Jessie L. Christiansen, Christopher J. Burke, Steve Bryson, Natalie Batalha, Michael R. Haas, Joseph Catanzarite, Jason F. Rowe, Geert Barentsen, Douglas A. Caldwell, Bruce D. Clarke, Jon M. Jenkins, Jie Li, David W. Latham, Jack J. Lissauer, Savita Mathur, Robert L. Morris, Shawn E. Seader, Jeffrey C. Smith, Todd C. Klaus, Joseph D. Twicken, Jeffrey E. Van Cleve, Bill Wohler, Rachel Akeson, David R. Ciardi, William D. Cochran, Christopher E. Henze, Steve B. Howell Apr 2018

Planetary Candidates Observed By Kepler. Viii. A Fully Automated Catalog With Measured Completeness And Reliability Based On Data Release 25, Susan E. Thompson, Jeffrey L. Coughlin, Kelssey Hoffman, Fergal Mullally, Jessie L. Christiansen, Christopher J. Burke, Steve Bryson, Natalie Batalha, Michael R. Haas, Joseph Catanzarite, Jason F. Rowe, Geert Barentsen, Douglas A. Caldwell, Bruce D. Clarke, Jon M. Jenkins, Jie Li, David W. Latham, Jack J. Lissauer, Savita Mathur, Robert L. Morris, Shawn E. Seader, Jeffrey C. Smith, Todd C. Klaus, Joseph D. Twicken, Jeffrey E. Van Cleve, Bill Wohler, Rachel Akeson, David R. Ciardi, William D. Cochran, Christopher E. Henze, Steve B. Howell

Physics & Astronomy Faculty Research

We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate …